
Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 1

L18: Speech synthesis (back end)

• Articulatory synthesis

• Formant synthesis

• Concatenative synthesis (fixed inventory)

• Unit-selection synthesis

• HMM-based synthesis

[This lecture is based on Schroeter, 2008, in Benesty et al., (Eds);
Dutoit, 2008, in Benesty et al., (Eds)]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 2

Introduction

• TTS front end
– Back-ends and front-ends are fairly independent components in TTS

• This gives the designer flexibility, having to worry only about the interface

– A TTS back-end uses information provided by the front-end to
synthesize speech using a specific method

– Traditionally, two types of synthesis methods can be distinguished

• Rule-based methods, such as articulatory and formant synthesis

• Corpus-based methods, such as concatenative systems

– This distinction is no longer clear, as there are hybrid methods that
employ characteristics from both approaches

– In this lecture, we will focus on corpus based methods, but will also
provide an overview of rule-based methods

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 3

Rule-based methods

• Articulatory synthesis
– Articulatory synthesis uses mechanical and acoustic models of the

speech apparatus to synthesize speech

• Rather than describing the speech signal itself, these models employ
control parameters that are meaningful for speech production

• Parameters may include geometry and dynamics of the articulators (jaw,
tongue, lips, velum) and the glottis, as well as forces and timings of all
relevant groups of articulatory muscles

– Therefore, these models can be as simple as the straight tube model
we saw in an earlier lecture, or as intricate as solving the Navier-
Stokes PDE

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 4

[Schroeter, 2008, in Benesty et al., (Eds)]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 5

– Performance

• Articulatory synthesis produces intelligible speech, but its output is far
from natural sounding

• The reason is that each of the various models needs to be extremely
accurate in reproducing the characteristics of a given speaker

– Most of these models, however, depend largely on expert guesses (rules) and
not enough on observed data

– Collecting articulatory data is an costly and fairly invasive process

• Thus, while articulatory synthesis are appealing for scientific purposes and
may one day provide completely “tunable” high-quality speech, their use
remains fairly specialized

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 6

• Formant synthesis
– In contrast, formant synthesis treats the vocal tract as a black-box, and

aims to reproduce only its I/O characteristics

• The goal is to approximate all VT resonances by a network of second-
order filter, either in series or in parallel

– Series representation

• Only requires frequency and bandwidth of each resonance plus a
common gain

• Approximates non-nasal sounds fairly well, but is not suited for nasals,
fricatives or mixed-voicing sounds

– Parallel representation

• Can approximate any speech spectrum

• However, it requires individual gains for each filter

• In addition, they introduce spectral zeros between the resonances

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 7

[Schroeter, 2005]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 8

– Characteristics

• Formant synthesizers have moderate computational requirements, which
make them practical for embedded applications

• Voice quality can be controlled, but it is very difficult to match the voice of
a target speaker

• Intelligibility is generally very high

• Formant synthesizers are highly appreciated in speech perception
research, as they provide a high-level of control of the stimuli

– The main problem of formant synthesizers is deriving rules

• Rules are needed to specify timing of the source and the dynamic values
of all filter parameters

• This is difficult enough for simple words, let alone for complete utterances

• These rules, however, may be derived through analysis-by-synthesis

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 9

Hybrid serial/parallel synthesizer of Klatt (19 parameters)

[Schroeter, 2008, in Benesty et al., (Eds)]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 10

Concatenative speech synthesis

• Basic concept
– Concatenative synthesis techniques work by “gluing” together speech

chunks that have been previously recorded

• Concatenation is done to carefully to preserve the natural coarticulation,
shimmer, jitter and inharmonic content of speech

• Transients in speech are more important for intelligibility than stable
segments, while modifying stable segments can easily affect naturalness

• Types of concatenative synthesis
– Concatenative synthesis with a fixed inventory

• These approaches generally contain one sample for each unit, and
perform prosodic modification to match the required prosody

• As a result of processing, some signal degradation is unavoidable

– Unit-selection-based synthesis

• These approaches store several instances of each unit, thus improving the
chances of finding a well-matched unit

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 11

• Concatenative synthesis with fixed inventory
– These approaches generally use the diphone as the speech unit

• A diphone starts in the middle of the stable part (if any) of a phone, and
ends in the middle part of the next phone

• Diphones reduce distortions since units are joined at their stable part

• They also preserve coarticulation, since units contain the transition
between phones

• Inventory size

– For a language with 𝑁 phonemes, up to 𝑁2 diphones may be needed

• In practice, the number is somewhat smaller since not all diphones are
encountered in natural languages

– In the case of English, a typical diphone database contains 1,500 units

• This represents about 3 minutes of speech ~ 5MB at 16kHz/16 bits

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 12

• Building the synthesizer
– Set up a list of required diphones

– Create a list of words such that each diphone appears at least once
(two is better for security)

– Exclude diphones in unfavorable positions (strongly stressed syllables
or strongly reduced contexts)

– Collect corpus as read by a professional speaker (avoid variations, even
large pitch variations)

– Identify the elected segments, manually with the help of visualization
tools, or with segmentation algorithms

– Collect segment waveforms into a diphone inventory

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 13

• Running the synthesizer
– Receive phonetic input (phonemes, duration, pitch) from front end

– Perform prosodic modification

• Diphones in the inventory will rarely match specs from the front end

– Smooth individual pairs of successive diphones

• The end of one diphone and beginning of the next will not match in
amplitude or in spectral envelope

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 14

[Schroeter, 2008, in Benesty et al., (Eds)]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 15

• Prosody modification
– Amplitude modification is straightforward

– Pitch or duration are non trivial: slowing down playback to increase
duration will simultaneously decrease pitch

– Two types of prosody modification are common

• Time-domain (TD-PSOLA)

• Frequency domain (HNM)

– These techniques will be discussed in the next lecture

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 16

[Schroeter, 2008, in Benesty et al., (Eds)]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 17

• Smoothing
– Concatenating units from different words or phonetic contexts is not

straightforward, and leads to audible clicks if not done carefully

– This is due to at least three types of mismatches between units:
phase, pitch, and spectral envelope mismatches

• Phase mismatches
– Occurs when OLA frames are not centered at the same place

– Several solutions are possible

• Accurately pitch-mark all boundary frames (as needed with TD-PSOLA)

• Adjust the position of OLA frames to maximize cross-correlation (WSOLA)

• Measure and correct phase mismatches (MBROLA, HNS)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 18

• Pitch mismatches
– Occurs when overlapped frames have very different 𝐹0

– This issue is difficult to resolve

• May require recruiting a professional speaker to read the corpus with a
fairly constant pitch

• Alternatively, it may be possible to redistribute the large pitch difference
across multiple frames

• Spectral envelope mismatch
– Occurs whenever overlapped frames have been extracted from rather

different contexts

– Also difficult to resolve; potential partial solutions may be

• Linearly interpolating the two spectral envelopes (HNS does this)

• Adjusting the unit boundaries on the fly to find a smoother join

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 19

• Performance
– Results from concatenative synthesis with a fixed inventory are clearly

intelligible

– Unfortunately, their speech output is far from natural sounding

– This issue can be traced back to two causes

• Storing only one units biases the recording stage towards over-articulated
speech, one that fit in most contexts and improve intelligibility

• Signal processing tricks are needed to adjust prosody, and these invariably
cause some degree of signal degradation

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 20

Unit-selection-based synthesis

• Basic idea
– In unit-selection, one stores several instances of each unit, and selects

(at run time) which instance to use

– For every target unit 𝑡𝑖 required (as specified by the front-end)

• The selection algorithm proposes a list of candidate units

– Each unit has a different context (generally not exactly that of 𝑡𝑖)

• The final choice is based on minimizing the sum of two cost functions

– A target cost 𝐶𝑡 𝑡𝑖 , 𝑢𝑖 , which estimates differences between 𝑡𝑖 and 𝑢𝑖

– A concatenation cost 𝑐𝑐 𝑢𝑖−1, 𝑢𝑖 , which estimates the quality of the
joint between candidate units 𝑢𝑖−1 and 𝑢𝑖

[Schroeter, 2008, in Benesty et al., (Eds)]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 21

– The best sequence of 𝑛 units 𝑢1
𝑛 for a given sequence of 𝑛 targets 𝑡1

𝑛 is
chosen so as to minimize the total cost

𝐶 𝑡1
𝑛, 𝑢1
𝑛 = 𝐶𝑡 𝑡𝑖 , 𝑢𝑖

𝑛

𝑖=1
+ 𝐶𝑐 𝑢𝑖−1, 𝑢𝑖

𝑛

𝑖=2

+𝐶𝑐 𝑆, 𝑢1 + 𝐶
𝑐 𝑢𝑛, 𝑆

• where 𝑆 denotes the target for a silence, and the optimal sequence is
found through a Viterbi search

– Prosodic modification is not needed, unless good candidate units
cannot be found with the correct pitch and duration

– Some smoothing can be applied since candidate units generally do not
concatenate smoothly

• Challenges in unit-selection synthesis
– Efficient target and concatenation costs

– Definition of optimal speech corpus

– Efficient search algorithms

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 22

• Target costs
– The optimal target cost should estimate the perceptual distance

between the candidate unit 𝑢𝑖 and the target unit 𝑡𝑖

• Each candidate unit is characterized by a feature vector, and

• feature values for the target are predicted by the front-end

– The target cost is the weighted sum of sub-costs

𝐶𝑡 𝑡𝑖 , 𝑢𝑖 = 𝑤𝑗
𝑡𝐶𝑗
𝑡 𝑡𝑖 , 𝑢𝑖

𝑝

𝑗=1

• Feature weights 𝑤𝑗
𝑡 are trained during construction of each TTS voice to

optimize the mapping from feature space to perceptual space

– The feature vector contains a variety of information

• Symbolic/phonological features (phonetic context, stress)

• Numerical features (pitch, duration)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 23

• Concatenation cost
– The ideal concatenation cost should reflect the perceived discontinuity

between successive units

– As with the target cost, the concatenation cost is a weighted sum

𝐶𝑐 𝑢𝑖−1, 𝑢𝑖 = 𝑤𝑗
𝑐𝐶𝑗
𝑐 𝑢𝑖−1, 𝑢𝑖

𝑗=1𝑞

– Features for the subcosts 𝐶𝑗
𝑐 𝑢𝑖−1, 𝑢𝑖 are based on spectral

representations (formant values, LP spectra, LSFs, MFCCs…)

– Distance measures include Euclidean distance, weighted Euclidean
distance (shown in the equation), Mahalanobis distance

– Concatenation costs are assigned to zero for originally consecutive
units in the speech corpus

• This allows the synthesizer to use the longest sequence of naturally
occurring units in the corpus

• The challenge is to make sure this does not happen at the expense of
intelligibility (if as a result the target costs become high)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 24

• Speech corpus
– Speech obeys some sort of Zipf’s law

• In a corpus of natural language utterances, the frequency of any word is
roughly proportional to its rank in the frequency table

• In other words, speech is composed of a large number of rare events

• The order for a diphone database to cover a randomly selected sentence
in English with 𝑝 = 0.75 is estimated to be around 150,000 (5 hours)

• Most commercial systems to date use about 1-10h (150-1500MB) and
achieve high quality most of the time

– One of the major problems with unit selection is data sparsity

• For this reason, it is common to include a set of safety units, generally a
complete set of diphones

• This provides a fall-back strategy and guarantees that performance is no
worse than that of fixed inventory systems

– For limited-domain TTS, unit selection is currently the best option

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 25

HMM-based synthesis

• HMM-based synthesis borrows techniques from ASR
– HMM are used as pattern generators rather than as recognizers

– HMMs are trained with spectral vectors as well as with phonetic,
stress and syntactic information (to be provided by the front-end)

– By using parameter tying (context clustering trees), HMM synthesis
can generalize to unseen data (something unit-selection cannot do)

• Each unit (a phoneme) is modeled by a three-state HMM
– Each state emits spectral feature vectors (MFCCs) according to a GMM

associated with the leaves of a context clustering tree

– Pitch and duration are also generated by the HMM through separate
clustering trees and GMMs

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 26

[Zen, Tokuda and Black, Speech Comm. 2009]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 27

• Generating speech
– The front-end provides a target sequence of phonemes, augmented

with stress and syntactic information

– A sentence HMM is formed by concatenating context-dependent
phoneme HMMs

– State durations of the phoneme HMMs are determined so as to
maximize their output probability given phonetic and syntactic context

– Spectral parameters are found in a slightly different fashion

• Spectral vectors produced by the HMM states contain static (MFCC) and
dynamic (Δ, Δ2) features

• However, the ML solution (i.e., the mean of each Gaussian) does not
guarantee that the dynamic constraints will be met

• Remarkably, a closed form solution to this problem (maximizing ML
subject to dynamic constraints) is available and leads to what is known as
a trajectory HMM

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 28

• Performance
– Current HMM-based synthesizers produce speech that is smooth but

of poor voice quality (depending on the excitation model used)

– HMM-synthesis, however, has several advantages over unit selection

• More flexibility, due to context clustering

• Better coverage of the acoustic space, due to the HMM/GMMs

• Fairly small footprint (1MB)

• When combined with adaptation techniques, new voices can be
generated with very small training sets (5-10 min)

• Also provides a natural framework for voice conversion and modification

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 29

ex18p1.m
Demonstrate a simple MATLAB-based TTS system for “Genglish”

(available at http://tcts.fpms.ac.be/projects/ttsbox)

http://tcts.fpms.ac.be/projects/ttsbox
http://tcts.fpms.ac.be/projects/ttsbox

