L18: Speech synthesis (back end)

Articulatory synthesis

Formant synthesis

Concatenative synthesis (fixed inventory)
Unit-selection synthesis

HMM-based synthesis

[This lecture is based on Schroeter, 2008, in Benesty et al., (Eds);
Dutoit, 2008, in Benesty et al., (Eds) ]
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Introduction

TTS front end

Back-ends and front-ends are fairly independent components in TTS
* This gives the designer flexibility, having to worry only about the interface

A TTS back-end uses information provided by the front-end to
synthesize speech using a specific method
Traditionally, two types of synthesis methods can be distinguished
* Rule-based methods, such as articulatory and formant synthesis
e Corpus-based methods, such as concatenative systems

This distinction is no longer clear, as there are hybrid methods that
employ characteristics from both approaches

In this lecture, we will focus on corpus based methods, but will also
provide an overview of rule-based methods
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Rule-based methods

Articulatory synthesis

— Articulatory synthesis uses mechanical and acoustic models of the
speech apparatus to synthesize speech

e Rather than describing the speech signal itself, these models employ
control parameters that are meaningful for speech production

e Parameters may include geometry and dynamics of the articulators (jaw,
tongue, lips, velum) and the glottis, as well as forces and timings of all
relevant groups of articulatory muscles

— Therefore, these models can be as simple as the straight tube model
we saw in an earlier lecture, or as intricate as solving the Navier-
Stokes PDE
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— Performance

 Articulatory synthesis produces intelligible speech, but its output is far
from natural sounding

* The reason is that each of the various models needs to be extremely
accurate in reproducing the characteristics of a given speaker

— Most of these models, however, depend largely on expert guesses (rules) and
not enough on observed data

— Collecting articulatory data is an costly and fairly invasive process
e Thus, while articulatory synthesis are appealing for scientific purposes and

may one day provide completely “tunable” high-quality speech, their use
remains fairly specialized
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Formant synthesis

— In contrast, formant synthesis treats the vocal tract as a black-box, and
aims to reproduce only its I/O characteristics
* The goal is to approximate all VT resonances by a network of second-
order filter, either in series or in parallel
— Series representation
e Only requires frequency and bandwidth of each resonance plus a
common gain
* Approximates non-nasal sounds fairly well, but is not suited for nasals,
fricatives or mixed-voicing sounds
— Parallel representation
* Can approximate any speech spectrum
* However, it requires individual gains for each filter
* In addition, they introduce spectral zeros between the resonances
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— Characteristics

* Formant synthesizers have moderate computational requirements, which
make them practical for embedded applications

* Voice quality can be controlled, but it is very difficult to match the voice of
a target speaker

* Intelligibility is generally very high

* Formant synthesizers are highly appreciated in speech perception
research, as they provide a high-level of control of the stimuli

— The main problem of formant synthesizers is deriving rules

* Rules are needed to specify timing of the source and the dynamic values
of all filter parameters

e This is difficult enough for simple words, let alone for complete utterances
* These rules, however, may be derived through analysis-by-synthesis
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Concatenative speech synthesis

Basic concept
— Concatenative synthesis techniques work by “gluing” together speech
chunks that have been previously recorded

* Concatenation is done to carefully to preserve the natural coarticulation,
shimmer, jitter and inharmonic content of speech

e Transients in speech are more important for intelligibility than stable
segments, while modifying stable segments can easily affect naturalness

Types of concatenative synthesis

— Concatenative synthesis with a fixed inventory

* These approaches generally contain one sample for each unit, and
perform prosodic modification to match the required prosody

e As aresult of processing, some signal degradation is unavoidable

— Unit-selection-based synthesis

* These approaches store several instances of each unit, thus improving the
chances of finding a well-matched unit
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Concatenative synthesis with fixed inventory

— These approaches generally use the diphone as the speech unit

* Adiphone starts in the middle of the stable part (if any) of a phone, and
ends in the middle part of the next phone

e Diphones reduce distortions since units are joined at their stable part

* They also preserve coarticulation, since units contain the transition
between phones

Inventory size

— For a language with N phonemes, up to N2 diphones may be needed

* In practice, the number is somewhat smaller since not all diphones are
encountered in natural languages

— In the case of English, a typical diphone database contains 1,500 units
* This represents about 3 minutes of speech ~ 5MB at 16kHz/16 bits
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Building the synthesizer

Set up a list of required diphones

Create a list of words such that each diphone appears at least once
(two is better for security)

Exclude diphones in unfavorable positions (strongly stressed syllables
or strongly reduced contexts)

Collect corpus as read by a professional speaker (avoid variations, even
large pitch variations)

Identify the elected segments, manually with the help of visualization
tools, or with segmentation algorithms

Collect segment waveforms into a diphone inventory
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Running the synthesizer
— Receive phonetic input (phonemes, duration, pitch) from front end
— Perform prosodic modification
* Diphones in the inventory will rarely match specs from the front end
— Smooth individual pairs of successive diphones

* The end of one diphone and beginning of the next will not match in
amplitude or in spectral envelope
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Prosody modification
— Amplitude modification is straightforward

— Pitch or duration are non trivial: slowing down playback to increase
duration will simultaneously decrease pitch

— Two types of prosody modification are common
* Time-domain (TD-PSOLA)
* Frequency domain (HNM)

— These techniques will be discussed in the next lecture
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Fig. 21.2a=c The TD-PSOLA reharmonization process. The pitch-modified waveform (c) has the same spectral envelope
as the original waveform (a). The center plot (b) shows the OLA frames and the amplitude of their Fourier transform,
which is approximately the spectral envelope of the initial signal (after [21.4])

[Schroeter, 2008, in Benesty et al., (Eds) ]
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Smoothing
— Concatenating units from different words or phonetic contexts is not
straightforward, and leads to audible clicks if not done carefully
— This is due to at least three types of mismatches between units:
phase, pitch, and spectral envelope mismatches

Phase mismatches
— Occurs when OLA frames are not centered at the same place

— Several solutions are possible
e Accurately pitch-mark all boundary frames (as needed with TD-PSOLA)
e Adjust the position of OLA frames to maximize cross-correlation (WSOLA)

* Measure and correct phase mismatches (MBROLA, HNS)
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Pitch mismatches
— Occurs when overlapped frames have very different F,
— This issue is difficult to resolve
* May require recruiting a professional speaker to read the corpus with a

fairly constant pitch
* Alternatively, it may be possible to redistribute the large pitch difference

across multiple frames

Spectral envelope mismatch
— Occurs whenever overlapped frames have been extracted from rather
different contexts
— Also difficult to resolve; potential partial solutions may be
e Linearly interpolating the two spectral envelopes (HNS does this)
e Adjusting the unit boundaries on the fly to find a smoother join
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Performance

— Results from concatenative synthesis with a fixed inventory are clearly
intelligible

— Unfortunately, their speech output is far from natural sounding

— This issue can be traced back to two causes

e Storing only one units biases the recording stage towards over-articulated
speech, one that fit in most contexts and improve intelligibility

 Signal processing tricks are needed to adjust prosody, and these invariably
cause some degree of signal degradation
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Unit-selection-based synthesis

Basic idea

— In unit-selection, one stores several instances of each unit, and selects
(at run time) which instance to use

— For every target unit t; required (as specified by the front-end)
e The selection algorithm proposes a list of candidate units
— Each unit has a different context (generally not exactly that of t;)
e The final choice is based on minimizing the sum of two cost functions

— Atarget cost Ct(t;, u;), which estimates differences between t; and u;

— A concatenation cost ¢“(u;_1,u;), which estimates the quality of the
joint between candidate units u;_; and u;
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[Schroeter, 2008, in Benesty et al., (Eds) ]
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— The best sequence of n units uf for a given sequence of n targets t{" is

chosen so as to minimize the total cost
n n

C(tf ui) = ) 1Ct(ti»ui) + ) ZCC(ui—l»ui)
= i=
+C¢(S,uy) + C(u,,S)

* where S denotes the target for a silence, and the optimal sequence is
found through a Viterbi search

— Prosodic modification is not needed, unless good candidate units
cannot be found with the correct pitch and duration

— Some smoothing can be applied since candidate units generally do not
concatenate smoothly

Challenges in unit-selection synthesis
— Efficient target and concatenation costs
— Definition of optimal speech corpus
— Efficient search algorithms
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Target costs

— The optimal target cost should estimate the perceptual distance
between the candidate unit u; and the target unit t;
e Each candidate unit is characterized by a feature vector, and
e feature values for the target are predicted by the front-end

— The target cost is the weighted sum of sub-costs
p
Ct(til ui) — Z 1 thCjt(tii ui)
]=

* Feature weights th are trained during construction of each TTS voice to

optimize the mapping from feature space to perceptual space

— The feature vector contains a variety of information
* Symbolic/phonological features (phonetic context, stress)
* Numerical features (pitch, duration)
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Concatenation cost

— The ideal concatenation cost should reflect the perceived discontinuity
between successive units

— As with the target cost, the concatenation cost is a weighted sum
Cc(ui_l, ui) = Z - W]-CC]-C(ul-_l,ui)
j=1q

— Features for the subcosts Cjc(ul-_l,ui) are based on spectral
representations (formant values, LP spectra, LSFs, MFCCs...)

— Distance measures include Euclidean distance, weighted Euclidean
distance (shown in the equation), Mahalanobis distance

— Concatenation costs are assigned to zero for originally consecutive
units in the speech corpus

* This allows the synthesizer to use the longest sequence of naturally
occurring units in the corpus

* The challenge is to make sure this does not happen at the expense of
intelligibility (if as a result the target costs become high)
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Speech corpus

— Speech obeys some sort of Zipf’s law

* In a corpus of natural language utterances, the frequency of any word is
roughly proportional to its rank in the frequency table

* In other words, speech is composed of a large number of rare events

* The order for a diphone database to cover a randomly selected sentence
in English with p = 0.75 is estimated to be around 150,000 (5 hours)

* Most commercial systems to date use about 1-10h (150-1500MB) and
achieve high quality most of the time
— One of the major problems with unit selection is data sparsity
* For this reason, it is common to include a set of safety units, generally a
complete set of diphones

* This provides a fall-back strategy and guarantees that performance is no
worse than that of fixed inventory systems

— For limited-domain TTS, unit selection is currently the best option
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HMM-based synthesis

HMM-based synthesis borrows techniques from ASR
— HMM are used as pattern generators rather than as recognizers

— HMMs are trained with spectral vectors as well as with phonetic,
stress and syntactic information (to be provided by the front-end)

— By using parameter tying (context clustering trees), HMM synthesis
can generalize to unseen data (something unit-selection cannot do)
Each unit (a phoneme) is modeled by a three-state HMM

— Each state emits spectral feature vectors (MFCCs) according to a GMM
associated with the leaves of a context clustering tree

— Pitch and duration are also generated by the HMM through separate
clustering trees and GMMs
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Generating speech

— The front-end provides a target sequence of phonemes, augmented
with stress and syntactic information

— A sentence HMM is formed by concatenating context-dependent
phoneme HMMs

— State durations of the phoneme HMMs are determined so as to
maximize their output probability given phonetic and syntactic context

— Spectral parameters are found in a slightly different fashion

» Spectral vectors produced by the HMM states contain static (MFCC) and
dynamic (A, A?) features

 However, the ML solution (i.e., the mean of each Gaussian) does not
guarantee that the dynamic constraints will be met

e Remarkably, a closed form solution to this problem (maximizing ML
subject to dynamic constraints) is available and leads to what is known as
a trajectory HMM
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Performance

— Current HMM-based synthesizers produce speech that is smooth but
of poor voice quality (depending on the excitation model used)

— HMM-synthesis, however, has several advantages over unit selection

More flexibility, due to context clustering
Better coverage of the acoustic space, due to the HMM/GMMs
Fairly small footprint (1MB)

When combined with adaptation techniques, new voices can be
generated with very small training sets (5-10 min)

Also provides a natural framework for voice conversion and modification
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ex18pl.m
Demonstrate a simple MATLAB-based TTS system for “Genglish”
(available at http://tcts.fpms.ac.be/projects/ttsbox)
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