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L7: Kernel density estimation 

ÅNon-parametric density estimation 

ÅHistograms 

ÅParzen windows 

ÅSmooth kernels 

ÅProduct kernel density estimation 

ÅThe naïve Bayes classifier 
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Non-parametric density estimation 

Å In the previous two lectures we have assumed that either 
ïThe likelihoods ὴὼȿ  were known (LRT), or 

ïAt least their parametric form was known (parameter estimation) 

ÅThe methods that will be presented in the next two lectures 
do not afford such luxuries 
ï Instead, they attempt to estimate the density directly from the data 

without assuming a particular form for the underlying distribution 

ïSounds challenging? You bet! 
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The histogram 

ÅThe simplest form of non-parametric DE is the histogram 
ïDivide the sample space into a number of bins and approximate the 

density at the center of each bin by the fraction of points in the 
training data that fall into the corresponding bin 

ὴ ὼ
ρ

ὔ

Π έὪ ὼ  Ὥὲ ίὥάὩ ὦὭὲ ὥί ὼ

ύὭὨὸὬ έὪ ὦὭὲ
 

ïThe histogram requires two “parameters” to be defined: bin width and 
starting position of the first bin 
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ÅThe histogram is a very simple form of density estimation, 
but has several drawbacks 
ïThe density estimate depends on the starting position of the bins 

ÅFor multivariate data, the density estimate is also affected by the 
orientation of the bins 

ïThe discontinuities of the estimate are not due to the underlying 
density; they are only an artifact of the chosen bin locations 

ÅThese discontinuities make it very difficult (to the naïve analyst) to grasp 
the structure of the data 

ïA much more serious problem is the curse of dimensionality, since the 
number of bins grows exponentially with the number of dimensions 

ÅIn high dimensions we would require a very large number of examples or 
else most of the bins would be empty 

ïThese issues make the histogram unsuitable for most practical 
applications except for quick visualizations in one or two dimensions 

ïTherefore, we will not spend more time looking at the histogram 
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Non-parametric DE, general formulation 
Å Let us return to the basic definition of probability to get a solid 

idea of what we are trying to accomplish 
ï The probability that a vector ὼ, drawn from a distribution ὴὼ, will fall in 

a given region ᴘ of the sample space is 

ὖ ὴὼ Ὠὼ
ᴘ

 

ï Suppose now that ὔ vectors ὼ ȟὼ ȟȣὼ  are drawn from the 
distribution; the probability that Ὧ of these ὔ vectors fall in ᴘ is given by 
the binomial distribution 

ὖὯ
ὔ

Ὧ
ὖ ρ ὖ  

ï It can be shown (from the properties of the binomial p.m.f.) that the mean 
and variance of the ratio ὯȾὔ are 

Ὁ ὖ    and    ὺὥὶ Ὁ ὖ   

ï Therefore, as ὔᴼЊ the distribution becomes sharper (the variance gets 
smaller), so we can expect that a good estimate of the probability ὖ can 
be obtained from the mean fraction of the points that fall within ᴘ 

ὖḙ
Ὧ

ὔ
 [Bishop, 1995] 
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ïOn the other hand, if we assume that ᴘ is so small that ὴὼ does not 
vary appreciably within it, then 

ὴὼ Ὠὼḙὴὼὠ
ᴘ

 

Åwhere ὠ is the volume enclosed by region ᴘ 

ïMerging with the previous result we obtain 

ὖ ᷿ὴὼ Ὠὼḙὴὼὠᴘ

ὖḙ                                      
ᵼὴὼḙ   

ï This estimate becomes more accurate as we increase the number of 
sample points ὔ and shrink the volume ὠ 

Å In practice the total number of examples is fixed 
ï To improve the accuracy of the estimate ὴὼ we could let ὠ approach 

zero but then ᴘ would become so small that it would enclose no examples 

ï This means that, in practice, we will have to find a compromise for ὠ 
ÅLarge enough to include enough examples within ᴘ 

ÅSmall enough to support the assumption that ὴὼ is constant within ᴘ 
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ï In conclusion, the general expression for non-parametric density 
estimation becomes 

ὴὼḙ  where 

ὠ ὺέὰόάὩ ίόὶὶέόὲὨὭὲὫ ὼ
ὔ ὸέὸὥὰ ΠὩὼὥάὴὰὩί            
Ὧ ΠὩὼὥάὴὰὩί ὭὲίὭὨὩ ὠ      

 

ïWhen applying this result to practical density estimation problems, 
two basic approaches can be adopted 

ÅWe can fix ὠ and determine Ὧ from the data. This leads to kernel density 
estimation (KDE), the subject of this lecture 

ÅWe can fix Ὧ and determine ὠ from the data. This gives rise to the k-
nearest-neighbor (kNN) approach, which we cover in the next lecture 

ï It can be shown that both kNN and KDE converge to the true 
probability density as ὔᴼЊ, provided that ὠ shrinks with ὔ, and 
that Ὧ grows with ὔ appropriately 
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Parzen windows 

ÅProblem formulation 
ïAssume that the region ᴘ that encloses  

the Ὧ examples is a hypercube with sides  
of length Ὤ centered at ὼ 

ÅThen its volume is given by ὠ Ὤ ,  
where Ὀ is the number of dimensions 

 

ïTo find the number of examples that  
fall within this region we define a kernel function ὑό 

ὑό
ρ ό ρςϳ  ᶅὮ ρȢȢȢὈ

π έὸὬὩὶύὭίὩ                        
 

ÅThis kernel, which corresponds to a unit hypercube centered at the origin, 
is known as a Parzen window or the naïve estimator 

ÅThe quantity ὑ ὼ ὼ ȾὬ is then equal to unity if ὼ  is inside a 
hypercube of side Ὤ centered on ὼ, and zero otherwise 

x 

h 

h 

h 

[Bishop, 1995] 
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ïThe total number of points inside the 
hypercube is then 

Ὧ В ὑ
ὼ ὼ

Ὤ
 

Substituting back into the expression for 
the density estimate 

 ὴ ὼ В ὑ  

 

ïNotice how the Parzen window 
estimate resembles the histogram, 
with the exception that the bin 
locations are determined by the data 
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ïTo understand the role of the kernel function we compute the 
expectation of the estimate ὴ ὼ 

 Ὁὴ ὼ В Ὁὑ  

                                     
ρ

Ὤ
Ὁὑ

ὼ ὼ

Ὤ

ρ

Ὤ
ὑ
ὼ ὼ

Ὤ
ὴὼὨὼ 

Åwhere we have assumed that vectors ὼ  are drawn independently from 
the true density ὴὼ 

ïWe can see that the expectation of ὴ ὼ is a convolution of the 
true density ὴὼ with the kernel function 
ÅThus, the kernel width Ὤ plays the role of a smoothing parameter: the 

wider Ὤ is, the smoother the estimate ὴ ὼ 

ïFor ὬO π, the kernel approaches a Dirac delta function and ὴ ὼ 
approaches the true density 
ÅHowever, in practice we have a finite number of points, so Ὤ cannot be 

made arbitrarily small, since the density estimate ὴ ὼ would then 
degenerate to a set of impulses located at the training data points 
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ÅExercise 
ïGiven dataset ὢ τȟυȟυȟφȟρςȟρτȟρυȟρυȟρφȟρχ, use Parzen 

windows to estimate the density ὴὼ at ώ σȟρπȟρυ; use Ὤ τ 

ïSolution 

ÅLet’s first draw the dataset to get an idea of the data 

 

 

 

ÅLet’s now estimate ὴώ σ 

ὴώ σ
ρ

ὔὬ
В ὑ

ὼ ὼ

Ὤ

ρ

ρπτ
ὑ
σ τ

τ
ὑ
σ υ
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Ễὑ

σ ρχ

τ
πȢππςυ 

ÅSimilarly 

Å ὴώ ρπ π π π π π π π π π π π 

Å ὴώ ρυ π π π π π ρ ρ ρ ρ π πȢρ 
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Smooth kernels 

ÅThe Parzen window has several drawbacks 
ï It yields density estimates that have discontinuities 

ï It weights equally all points ὼ, regardless of their distance to the 
estimation point ὼ 

ÅFor these reasons, the Parzen window is commonly replaced 
with a smooth kernel function ὑό 

᷿ ὑὼὨὼ ρ  

ïUsually, but not always, ὑό will be a radially symmetric and 

unimodal pdf, such as the Gaussian ὑὼ ς“ ȾὩ  

ïWhich leads to the density estimate 

 ὴ ὼ В ὑ  

    

 

 

 

 

 

- 1 /2 - 1 /2 u

1

P a rz e n (u)

A = 1

- 1 /2 - 1 /2 u

K (u )

A = 1

- 1 /2 - 1 /2 u

1

P a rz e n (u)

A = 1

- 1 /2 - 1 /2 u

K (u )

A = 1



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 13 

Å Interpretation 
ï Just as the Parzen window estimate can be seen as a sum of boxes 

centered at the data, the smooth kernel estimate is a sum of “bumps” 

ïThe kernel function determines the shape of the bumps 

ïThe parameter Ὤ, also called the smoothing parameter or bandwidth, 
determines their width 
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ÅThe problem of choosing ▐ is crucial in density estimation 
ïA large Ὤ will over-smooth the DE and mask the structure of the data 

ïA small Ὤ will yield a DE that is spiky and very hard to interpret 
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ïWe would like to find a value of Ὤ that minimizes the error between 
the estimated density and the true density 

ÅA natural measure is the MSE at the estimation point ὼ, defined by 

Ὁ ὴ ὼ ὴὼ Ὁὴ ὼ ὴὼ ὺὥὶὴ ὼ  

ïThis expression is an example of the bias-variance tradeoff that we 
saw in an earlier lecture: the bias can be reduced at the expense of 
the variance, and vice versa 

ÅThe bias of an estimate is the systematic error incurred in the estimation 

ÅThe variance of an estimate is the random error incurred in the estimation 
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ïThe bias-variance dilemma applied to bandwidth selection simply 
means that 

ÅA large bandwidth will reduce the differences among the estimates of 
ὴ ὼ for different data sets (the variance), but it will increase the bias 
of ὴ ὼ with respect to the true density ὴὼ 

ÅA small bandwidth will reduce the bias of ὴ ὼ, at the expense of a 
larger variance in the estimates ὴ ὼ  
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Bandwidth selection methods, univariate case 

ÅSubjective choice 
ïThe natural way for choosing Ὤ is to plot out several curves and choose 

the estimate that best matches one’s prior (subjective) ideas 

ïHowever, this method is not practical in pattern recognition since we 
typically have high-dimensional data 

ÅReference to a standard distribution 
ïAssume a standard density function and find the value of the 

bandwidth that minimizes the integral of the square error (MISE) 

Ὤ ÁÒÇÍÉÎὉ᷿ὴ ὼ ὴὼ Ὠὼ 

ï If we assume that the true distribution is Gaussian and we use a 
Gaussian kernel, it can be shown that the optimal value of Ὤ is 

Ὤz ρȢπφ„ὔ ϳ  

Åwhere „ is the sample standard deviation and ὔ is the number of training 
examples 
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ïBetter results can be obtained by 

ÅUsing a robust measure of the spread instead of the sample variance, and  

ÅReducing the coefficient ρȢπφ to better cope with multimodal densities 

ÅThe optimal bandwidth then becomes 

Ὤᶻ πȢωὃὔ ϳ  where ὃ ÍÉÎ„ȟ
 

Ȣ
 

ï IQR is the interquartile range, a robust estimate of the spread 

ÅIQR is the difference between the 75th percentile (ὗσ) and the 25th 
percentile (ὗρ): ὍὗὙὗσ ὗρ 

ÅA percentile rank is the proportion of examples in a distribution that a 
specific example is greater than or equal to 
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ÅMaximum likelihood cross-validation 
ïThe ML estimate of Ὤ is degenerate since it yields Ὤ π, a density 

estimate with Dirac delta functions at each training data point 

ïA practical alternative is to maximize the “pseudo-likelihood” 
computed using leave-one-out cross-validation 

Ὤz ÁÒÇÍÁØ
ρ

ὔ
В ὰέὫὴ ὼ  

ύὬὩὶὩ ὴ ὼ
ρ

ὔ ρὬ
ὑ
ὼ ὼ

Ὤ
 

[Silverman, 1986] 
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Multivariate density estimation 
Å For the multivariate case, the KDE is 

ὴ ὼ В ὑ   

ïNotice that the bandwidth Ὤ is the same for all the axes, so this density 
estimate will be weight all the axis equally 

ï If one or several of the features has larger spread than the others, we 
should use a vector of smoothing parameters or even a full covariance 
matrix, which complicates the procedure 

Å There are two basic alternatives to solve the scaling problem 
without having to use a more general KDE 
ï Pre-scaling each axis (normalize to unit variance, for instance) 

ï Pre-whitening the data (linearly transform so ɫ Ὅ), estimate the density, 
and then transform back [Fukunaga] 

ÅThe whitening transform is ώ ɤ Ⱦὓ ὼ,  
where ɤ and ὓ are the eigenvalue and  
eigenvector matrices of ɫ 

ÅFukunaga’s method is equivalent to  
using a hyper-ellipsoidal kernel  
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Product kernels 

ÅA good alternative for multivariate KDE is the product kernel 

ὴ ὼ В ὑὼȟὼ ȟὬȟȣὬ   

ύὬὩὶὩ  ὑὼȟὼ ȟὬȟȣὬ
ȣ
Б ὑ   

ïThe product kernel consists of the product of one-dimensional kernels 
ÅTypically the same kernel function is used in each dimension (ὑ ὼ
ὑὼ), and only the bandwidths are allowed to differ 

ÅBandwidth selection can then be performed with any of the methods 
presented for univariate density estimation 

ïNote that although ὑὼȟὼ ȟὬȟȣὬ  uses kernel independence, this 
does not imply we assume the features are independent 
ÅIf we assumed feature independence, the DE would have the expression 

ὴ ὼ Б В ὑ   

ÅNotice how the order of the summation and product are reversed 
compared to the product kernel 
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Example I 
ïThis example shows the product KDE of a bivariate unimodal Gaussian 

Å100 data points were drawn from the distribution  

ÅThe figures show the true density (left) and the estimates using 

Ὤ ρȢπφ„ὔ Ⱦ  (middle) and Ὤ πȢωὃὔ Ⱦ  (right) 
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Example II 
ïThis example shows the product KDE of a bivariate bimodal Gaussian 

Å100 data points were drawn from the distribution  

ÅThe figures show the true density (left) and the estimates using 

Ὤ ρȢπφ„ὔ Ⱦ  (middle) and Ὤ πȢωὃὔ Ⱦ  (right) 
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Naïve Bayes classifier 
Å Recall that the Bayes classifier is given by the following family of DFs 

ὧὬέίὩ ὭὪ Ὣ  ὼ Ὣ ὼ Ὦᶅ Ὥ ύὬὩὶὩ Ὣ ὼ ὖȿὼ 

ï Using Bayes rule, these discriminant functions can be expressed as 
Ὣ ὼ ὖȿὼᶿὴὼ ὖ  

Å where ὖ  is our prior knowledge and Ðὼȿ  is obtained through DE 

ï Although the DE methods presented in this lecture allow us to estimate the multivariate 
likelihood ὴὼȿ , the curse of dimensionality makes it a very tough problem! 

Å One highly practical simplification is the Naïve Bayes classifier 

ï The Naïve Bayes classifier assumes that features are class-conditionally independent 

ὴὼȿ Б ὴὼȿ   

Å This assumption is not as rigid as assuming independent features ὴὼ Б ὴὼ  

ï Merging this expression into the DF yields the decision rule for the Naïve Bayes classifier 

Ὣȟ ὼ ὖ Б ὴὼȿ   

ï The main advantage of the NB classifier is that we only need to compute the univariate 
ὴὼȿ , which is much easier than estimating the multivariate ὴὼ  

ï Despite its simplicity, the Naïve Bayes has been shown to have comparable performance 
to artificial neural networks and decision tree learning in some domains 
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ÅClass-conditional independence vs. independence 
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