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Non-parametric density estimation

In the previous two lectures we have assumed that either

I The likelihoods ] &  were known (LRT), or
I At least their parametric form was known (parameter estimation)

The methods that will be presented in the next two lectures

do not afford such luxuries

I Instead, they attempt to estimate the density directly from the data
without assuming a particular form for the underlying distribution

I Sounds challenging? You bet!
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The histogram

The simplest form of non-parametric DE is the histogram

I Divide the sample space into a number of bins and approximate the
density at the center of each bin by the fraction of points in the
training data that fall into the corresponding bin

p[MNe "D Qi & a3 ia)
0 [0 QQD QP

n (W

I The histogram requires two “parameters” to be defined: bin width and
starting position of the first bin
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The histogram is a very simple form of density estimation,
but has several drawbacks

I The density estimate depends on the starting position of the bins

A For multivariate data, the density estimate is also affected by the
orientation of the bins

I The discontinuities of the estimate are not due to the underlying
density; they are only an artifact of the chosen bin locations

A These discontinuities make it very difficult (to the naive analyst) to grasp
the structure of the data

I A much more serious problem is the curse of dimensionality, since the
number of bins grows exponentially with the number of dimensions

A In high dimensions we would require a very large number of examples or
else most of the bins would be empty

I These issues make the histogram unsuitable for most practical
applications except for quick visualizations in one or two dimensions

I Therefore, we will not spend more time looking at the histogram
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Non-parametric DE, general formulation

Let us return to the basic definition of probability to get a solid
iIdea of what we are trying to accomplish

I The probability that a vector &) drawn from a distribution n @, will fall in
a given region P of the sample space is

0 Ao

I Suppose now that U vectors {oo ho B © } are drawn from the
distribution; the probability that ‘Qof these U vectors fall in P is given by
the blnomlal distribution

3 6 5 5
59 (g @ ©
I It can be shown (from the properties of the binomial p.m.f.) that the mean
and variance of the ratio (YU are

'O[—] 0 and U 001—] 'O[(— 6) ] L)
i Therefore, as 0 © Hbthe distribution becomes sharper (the variance gets

smaller), so we can expect that a good estimate of the probability U can

be obtained from the mean fraction of the points that fall within P
. Q
Le o [Bishop, 1995]
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I On the other hand, if we assume that P is so small that ] w does not
vary appreciably within it, then

N(w) e N(Ww
P
A where wis the volume enclosed by region P
I Merging with the previous result we obtain
O, A0 & RO

Q_

t N(we —

C

I This estimate becomes more accurate as we increase the number of
sample points U and shrink the volume w

In practice the total number of examples is fixed

i To improve the accuracy of the estimate 1] @ we could let wapproach
zero but then P would become so small that it would enclose no examples

I This means that, in practice, we will have to find a compromise for @
A Large enough to include enough examples within P
A Small enough to support the assumption that ] G is constant within P
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I In conclusion, the general expression for non-parametric density
estimation becomes

W VEAOAQA | € 060QMNE "Q
N(We —where 0 0 € dROWOWAN G Qi
Q Mood NREQDIRQQ
I When applying this result to practical density estimation problems,
two basic approaches can be adopted

A We can fix @and determine "Qfrom the data. This leads to kernel density
estimation (KDE), the subject of this lecture

A We can fix ‘Qand determine wfrom the data. This gives rise to the k-
nearest-neighbor (kNN) approach, which we cover in the next lecture

I It can be shown that both kNN and KDE converge to the true
probability density as 0 © H, provided that wshrinks with U, and
that Qgrows with O appropriately
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Parzen windows

Problem formulation

| Assume that the region P that encloses
the ‘Qexamples is a hypercube with sides
of length "(Qcentered at @

. h e
A Then its volume is given by @ 'Q,
where Ois the number of dimensions h

h

A
v

I To find the number of examples that
fall within this region we define a kernel function0 0

0@6) P 6] pic ! Q p&sO
m € 00QQ1 0VQI Q
A This kernel, which corresponds to a unit hypercube centered at the origin,
is known as a Parzen window or the naive estimator

A The quantity 0 @ @ TQ s then equal to unity if @ s inside a
hypercube of side ‘Qcentered on &) and zero otherwise

[Bishop, 1995]
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I The total number of points inside the
hypercube is then

I
U"Q

Substituting back into the expression for
the density estimate

@ —B o(—)

I Notice how the Parzen window
estimate resembles the histogram,
with the exception that the bin
locations are determined by the data
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To understand the role of the kernel function we compute the
expectation of the estimate (W)

o @ —8 ofo(—)

Pl (O @ P (PO N ey
EO[“(—Q>] o) ”(T)”WQ*’

A where we have assumed that vectors @ are drawn independently from
the true density | @

We can see that the expectation of 1 () is a convolution of the
true density N W with the kernel function

A Thus, the kernel width "Qplays the role of a smoothing parameter: the
wider Qis, the smoother the estimate ()

For 'Q© 11, the kernel approaches a Dirac delta functionand ] (W)
approaches the true density
A However, in practice we have a finite number of points, so "‘Qcannot be

made arbitrarily small, since the density estimate] (@) would then
degenerate to a set of impulses located at the training data points
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Exercise
i Givendataset® {Thufwhphp ¢p tp bp Bp @ ¥, use Parzen
windows to estimate the density ] w atw olp 1P PuseQ T

I Solution
A Let’s first draw the dataset to get an idea of the data

A y=15
P y=3 y=10 &
[ J [ J
| | + ? ? ? | | | + | ? | ? ? ? ? | |
5 10 15 X
A Let’s now estimaten @ ©
oy P (0 W p {0 1 (o U .. [0 p
nw o) U_QB U< ,,Q> R U< - ) u< - ) EU< - >>] TBITTC L
A Similarly
nNow pXx ——[m T T T T T T T Tt T T
nw py) —[m m nmnmmoppp p M ™
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Smooth kernels

The Parzen window has several drawbacks
I Ityields density estimates that have discontinuities

I It weights equally all points W, regardless of their distance to the
estimation point W

For these reasons, the Parzen window is commonly replaced
with a smooth kernel functionv 6

L(WQAwW p
I Usually, but not always, U 0 will be a radially symmetric and

unimodal pdf, such as the Gaussian U (&) (¢ 9 7Q~
I Which leads to the density estimate

@ —B o(—)

Parzen(u) K(u)
1
]

-1/2 -1/2 u -1/2 -1/2 u
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Interpretation

| Just as the Parzen window estimate can be seen as a sum of boxes
centered at the data, the smooth kernel estimate is a sum of “bumps”

I The kernel function determines the shape of the bumps

I The parameter "Qalso called the smoothing parameter or bandwidth,
determines their width
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Bandwidth selection

The problem of choosing |is crucial in density estimation
T Alarge "Qwill over-smooth the DE and mask the structure of the data

I A small "Qwill yield a DE that is spiky and very hard to interpret
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T We would like to find a value of '‘Qthat minimizes the error between
the estimated density and the true density

A A natural measure is the MSE at the estimation point &3 defined by

an @ A@ 1 dn @ A@l b ek (@)

I This expression is an example of the bias-variance tradeoff that we
saw in an earlier lecture: the bias can be reduced at the expense of
the variance, and vice versa

A The bias of an estimate is the systematic error incurred in the estimation

A The variance of an estimate is the random error incurred in the estimation
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I The bias-variance dilemma applied to bandwidth selection simply

means that

A A large bandwidth will reduce the differences among the estimates of

N (o for different data sets (the variance), but it will increase the bias

of 1 () with respect to the true density | @

A A small bandwidth will reduce the bias of )
(0

larger variance in the estimates I

BIAS

True density

Multiple kernel
density estimates
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Bandwidth selection methods, univariate case

Subjective choice
I The natural way for choosing "Qis to plot out several curves and choose
the estimate that best matches one’s prior (subjective) ideas

I However, this method is not practical in pattern recognition since we
typically have high-dimensional data

Reference to a standard distribution

I Assume a standard density function and find the value of the
bandwidth that minimizes the integral of the square error (MISE)

R  AJGEl (1 @ @) Qd
I If we assume that the true distribution is Gaussian and we use a
Gaussian kernel, it can be shown thafc the optimal value of Qs

Q psrel !
A where ,, is the sample standard deviation and O is the number of training
examples
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I Better results can be obtained by

A Using a robust measure of the spread instead of the sample variance, and

A Reducing the coefficient p8t @o better cope with multimodal densities
A The optimal bandwidth then becomes

D TeO® ! whered I'Eq,,I:\S—)

I 1QR is the interquartile range, a robust estimate of the spread

A 1QR is the difference between the 75th percentile (O ¢ and the 25th
percentile (U P:'O0 YL O U P

A A percentile rank is the proportion of examples in a distribution that a
specific example is greater than or equal to
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Maximum likelihood cross-validation

I The ML estimate of 'Qis degenerate since it yields 'Q TT, a density
estimate with Dirac delta functions at each training data point

I A practical alternative is to maximize the “pseudo-likelihood”
computed using leave-one-out cross-validation

G Adg&%‘?s & Q6 )}

0 "QQh Aw ) @ o0 U( 9 )

[Silverman, 1986]
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Multivariate density estimation

For the multivariate case, the KDE is
@ —8 o(—)
I Notice that the bandwidth "Qis the same for all the axes, so this density

estimate will be weight all the axis equally

I If one or several of the features has larger spread than the others, we
should use a vector of smoothing parameters or even a full covariance
matrix, which complicates the procedure

There are two basic alternatives to solve the scaling problem
without having to use a more general KDE
I Pre-scaling each axis (normalize to unit variance, for instance)

I Pre-whitening the data (linearly transformsot () estimate the density,
and then transform back [Fukunaga]

A The whitening transformisd ¥ 10 ey ™
where ¥ and U are the eigenvalue and //@ )
eigenvector matrices of 1 - /

/
A Fukunaga’s method is equivalent to / @O v
using a hyper-ellipsoidal kernel / @ 7

e
—— ——
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Product kernels

A good alternative for multivariate KDE is the product kernel
n (@ -B U(chd AQMBQ)

e ()

I The product kernel consists of the product of one-dimensional kernels

A Typically the same kernel function is used in each dimension (0 @
U ), and only the bandwidths are allowed to differ

A Bandwidth selection can then be performed with any of the methods
presented for univariate density estimation

i Note that although U (ufn) Qs Q) uses kernel independence, this
does not imply we assume the features are independent

A If we assumed feature independence, the DE would have the expression

@ —a o (—)
A Notice how the order of the summation and product are reversed
compared to the product kernel

0 "QQIL R HQB Q)
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Example |

I This example shows the product KDE of a bivariate unimodal Gaussian

A 100 data points were drawn from the distribution

A The figures show the true density (left) and the estimates using
Q p8t gl 7 (middle)and Q T@DO T (right)
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Example I

I This example shows the product KDE of a bivariate bimodal Gaussian
A 100 data points were drawn from the distribution

A The figures show the true density (left) and the estimates using
Q p8t ey T (middle)and™Q T@o® T (right)
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Naive Bayes classifier

Recall that the Bayes classifier is given by the following family of DFs
00T @O Q@ QB QQIQE@) 0( L)
Using Bayes rule, these discri~minant functions can be expressed as
Q@ 00 WO Nl Hoq )

A where 01 is our prior knowledge and B 6%

is obtained through DE
Although the DE methods presented in this lecture allow us to estimate the multivariate
likelihood ) «® , the curse of dimensionality makes it a very tough problem!

One highly practical simplification is the Naive Bayes classifier
'

The Naive Bayes classifier assumes that features are class-conditionally independent
NG ) B @S )
A This assumption is not as rigid as assuming independent features (¢ B n w
Merging this expression into the DF yields the decision rule for the Naive Bayes classifier

(@ 00 )B Nws

The main advantage of the NB classifier is that we only need to compute the univariate
N(w § ), which is much easier than estimating the multivariate (ol )

Despite its simplicity, the Naive Bayes has been shown to have comparable performance
to artificial neural networks and decision tree learning in some domains
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Class-conditional independence vs. independence
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