L5: Quadratic classifiers

Bayes classifiers for Normally distributed classes

- Case 1: $\Sigma_i = \sigma^2 I$
- Case 2: $\Sigma_i = \Sigma$ (\(\Sigma\) diagonal)
- Case 3: $\Sigma_i = \Sigma$ (\(\Sigma\) non-diagonal)
- Case 4: $\Sigma_i = \sigma_i^2 I$
- Case 5: $\Sigma_i \neq \Sigma_j$ (general case)

Numerical example

Linear and quadratic classifiers: conclusions
Bayes classifiers for Gaussian classes

Recap
- On L4 we showed that the decision rule that minimized $P[\text{error}]$ could be formulated in terms of a family of discriminant functions

For normally Gaussian classes, these DFs reduce to simple expressions
- The multivariate Normal pdf is

$$f_X(x) = (2\pi)^{-N/2} |\Sigma|^{-1/2} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

- Using Bayes rule, the DFs become

$$g_i(x) = P(\omega_i|x) = \frac{P(\omega_i)p(x|\omega_i)}{p(x)}$$

$$= (2\pi)^{-N/2} |\Sigma_i|^{-1/2} e^{-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)} P(\omega_i)/p(x)$$

- Eliminating constant terms

$$g_i(x) = |\Sigma_i|^{-1/2} e^{-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)} P(\omega_i)$$

- And taking natural logs

$$g_i(x) = -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) - \frac{1}{2} \log |\Sigma_i| + \log P(\omega_i)$$

- This expression is called a quadratic discriminant function
Case 1: $\Sigma_i = \sigma^2 I$

This situation occurs when features are statistically independent with equal variance for all classes

- In this case, the quadratic DFs become

 \[g_i(x) = -\frac{1}{2} (x - \mu_i)^T (\sigma^2 I)^{-1} (x - \mu_i) - \frac{1}{2} \log |\sigma^2 I| + \log P_i \equiv -\frac{1}{2\sigma^2} (x - \mu_i)^T (x - \mu_i) + \log P_i \]

- Expanding this expression

 \[g_i(x) = -\frac{1}{2\sigma^2} (x^T x - 2\mu_i^T x + \mu_i^T \mu_i) + \log P_i \]

- Eliminating the term $x^T x$, which is constant for all classes

 \[g_i(x) = -\frac{1}{2\sigma^2} (-2\mu_i^T x + \mu_i^T \mu_i) + \log P_i = w_i^T x + w_0 \]

- So the DFs are linear, and the boundaries $g_i(x) = g_j(x)$ are hyper-planes

- If we assume equal priors

\[
 g_i(x) = -\frac{1}{2\sigma^2} (x - \mu_i)^T (x - \mu_i)
\]

- This is called a minimum-distance or nearest mean classifier

- The equiprobable contours are hyper-spheres

- For unit variance ($\sigma^2 = 1$), $g_i(x)$ is the Euclidean distance

[Schalkoff, 1992]
Example

- Three-class 2D problem with equal priors

\[
\begin{align*}
\mu_1 &= [3, 2]^T, & \mu_2 &= [7, 4]^T, & \mu_3 &= [2, 5]^T, \\
\Sigma_1 &= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, & \Sigma_2 &= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, & \Sigma_3 &= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\end{align*}
\]
Case 2: $\Sigma_i = \Sigma$ (diagonal)

Classes still have the same covariance, but features are allowed to have different variances

– In this case, the quadratic DFs becomes

$$g_i(x) = -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) - \frac{1}{2} \log |\Sigma_i| + \log P_i =$$

$$- \frac{1}{2} \sum_{k=1}^{N} \frac{(x_k - \mu_{i,k})^2}{\sigma_k^2} - \frac{1}{2} \log \prod_{k=1}^{N} \sigma_k^2 + \log P_i$$

– Eliminating the term x_k^2, which is constant for all classes

$$g_i(x) = -\frac{1}{2} \sum_{k=1}^{N} \frac{-2x_k \mu_{i,k} + \mu_{i,k}^2}{\sigma_k^2} - \frac{1}{2} \log \prod_{k=1}^{N} \sigma_k^2 + \log P_i$$

– This discriminant is also linear, so the decision boundaries $g_i(x) = g_j(x)$ will also be hyper-planes

– The equiprobable contours are hyper-ellipses aligned with the reference frame

– Note that the only difference with the previous classifier is that the distance of each axis is normalized by its variance
Example

- Three-class 2D problem with equal priors

\[\mu_1 = [3 \ 2]^T \quad \mu_2 = [5 \ 4]^T \quad \mu_3 = [2 \ 5]^T \]

\[\Sigma_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \Sigma_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \Sigma_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \]
Case 3: $\Sigma_i = \Sigma$ (non-diagonal)

Classes have equal covariance matrix, but no longer diagonal

- The quadratic discriminant becomes

$$g_i(x) = -\frac{1}{2} (x - \mu_i)^T \Sigma^{-1} (x - \mu_i) - \frac{1}{2} \log |\Sigma| + \log P_i$$

- Eliminating the term $\log |\Sigma|$, which is constant for all classes, and assuming equal priors

$$g_i(x) = -\frac{1}{2} (x - \mu_i)^T \Sigma^{-1} (x - \mu_i)$$

- The quadratic term is called the **Mahalanobis distance**, a very important concept in statistical pattern recognition

- The Mahalanobis distance is a vector distance that uses a Σ^{-1} norm,
- Σ^{-1} acts as a stretching factor on the space
- Note that when $\Sigma = I$, the Mahalanobis distance becomes the familiar Euclidean distance

\[\|x_i - \mu\|_{\Sigma^{-1}}^2 = K \]

\[\|x_i - \mu\|^2 = K \]
– Expanding the quadratic term
\[g_i(x) = -\frac{1}{2} (x^T \Sigma^{-1} x - 2 \mu_i^T \Sigma^{-1} x + \mu_i^T \Sigma^{-1} \mu_i) \]
– Removing the term \(x^T \Sigma^{-1} x \), which is constant for all classes
\[g_i(x) = -\frac{1}{2} (-2 \mu_i^T \Sigma^{-1} x + \mu_i^T \Sigma^{-1} \mu_i) = w_i^T x + w_0 \]
– So the DFs are still linear, and the decision boundaries will also be hyper-planes
– The equiprobable contours are hyper-ellipses aligned with the eigenvectors of \(\Sigma \)
– This is known as a minimum (Mahalanobis) distance classifier
Example

- Three-class 2D problem with equal priors

\[
\begin{align*}
\mu_1 &= [3 \ 2]^T \\
\mu_2 &= [5 \ 4]^T \\
\mu_3 &= [2 \ 5]^T \\
\Sigma_1 &= \begin{bmatrix} 1 & 7 \\ 7 & 2 \end{bmatrix} \\
\Sigma_2 &= \begin{bmatrix} 1 & 7 \\ 7 & 2 \end{bmatrix} \\
\Sigma_3 &= \begin{bmatrix} 1 & 7 \\ 7 & 2 \end{bmatrix}
\end{align*}
\]
Case 4: $\Sigma_i = \sigma_i^2 I$

In this case, each class has a different covariance matrix, which is proportional to the identity matrix

- The quadratic discriminant becomes

 $$g_i(x) = -\frac{1}{2} (x - \mu_i)^T \sigma_i^{-2} (x - \mu_i) - \frac{1}{2} N \log |\sigma_i^2| + \log P_i$$

- This expression cannot be reduced further
- The decision boundaries are quadratic: hyper-ellipses
- The equiprobable contours are hyper-spheres aligned with the feature axis
Example

- Three-class 2D problem with equal priors

\[
\begin{align*}
\mu_1 &= [3 \ 2]^T \\
\mu_2 &= [5 \ 4]^T \\
\mu_3 &= [2 \ 5]^T \\
\Sigma_1 &= \begin{bmatrix} .5 & .5 \\ .5 & .5 \end{bmatrix} \\
\Sigma_2 &= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \\
\Sigma_3 &= \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}
\end{align*}
\]
Case 5: $\Sigma_i \neq \Sigma_j$ (general case)

We already derived the expression for the general case

$$g_i(x) = -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) - \frac{1}{2} \log |\Sigma_i| + \log P_i$$

- Reorganizing terms in a quadratic form yields

$$g_i(x) = x^T W_{2,i} x + w_{1,i}^T x + w_{0,i}$$

where

$$\begin{align*}
W_{2,i} &= -\frac{1}{2} \Sigma_i^{-1} \\
w_{1,i} &= \Sigma_i^{-1} \mu_i \\
w_{0,i} &= -\frac{1}{2} \mu_i^T \Sigma_i^{-1} \mu_i - \frac{1}{2} \log |\Sigma_i| + \log P_i
\end{align*}$$

- The equiprobable contours are hyper-ellipses, oriented with the eigenvectors of Σ_i for that class

- The decision boundaries are again quadratic: hyper-ellipses or hyper-paraboloids

- Notice that the quadratic expression in the discriminant is proportional to the Mahalanobis distance for covariance Σ_i
Example

- Three-class 2D problem with equal priors

\[
\begin{align*}
\mu_1 &= [3 \ 2]^T \\
\mu_2 &= [5 \ 4]^T \\
\mu_3 &= [3 \ 4]^T \\
\Sigma_1 &= \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \\
\Sigma_2 &= \begin{bmatrix} 1 & -1 \\ -1 & 7 \end{bmatrix} \\
\Sigma_3 &= \begin{bmatrix} .5 & .5 \\ .5 & .3 \end{bmatrix}
\end{align*}
\]
Numerical example

Derive a linear DF for the following 2-class 3D problem

\[\mu_1 = [0 \ 0 \ 0]^T; \mu_2 = [1 \ 1 \ 1]^T; \Sigma_1 = \Sigma_2 = \begin{bmatrix} .25 & .25 \\ .25 & .25 \end{bmatrix}; P_2 = 2P_1 \]

Solution

\[g_1(x) = -\frac{1}{2\sigma^2} (x - \mu_1)^T (x - \mu_1) + \log P_1 = -\frac{1}{2} \begin{bmatrix} x - 0 \\ y - 0 \\ z - 0 \end{bmatrix}^T \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x - 0 \\ y - 0 \\ z - 0 \end{bmatrix} + \log \frac{1}{3} \]

\[g_2(x) = -\frac{1}{2} \begin{bmatrix} x - 1 \\ y - 1 \\ z - 1 \end{bmatrix}^T \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x - 1 \\ y - 1 \\ z - 1 \end{bmatrix} + \log \frac{2}{3} \]

\[g_1(x) \overset{\omega_1}{\underset{\omega_2}{>}} g_2(x) \Rightarrow -2(x^2 + y^2 + z^2) + \log \frac{1}{3} \overset{\omega_1}{\underset{\omega_2}{>}} -2((x - 1)^2 + (y - 1)^2 + (z - 1)^2) + \log \frac{2}{3} \]

\[x + y + z \overset{\omega_2}{\underset{\omega_1}{>}} \frac{6 - \log 2}{4} = 1.32 \]

Classify the test example \(x_u = [0.1 \ 0.7 \ 0.8]^T \)

\[0.1 + 0.7 + 0.8 = 1.6 \overset{\omega_1}{\underset{\omega_2}{>}} 1.32 \Rightarrow x_u \in \omega_2 \]
Conclusions

The examples in this lecture illustrate the following points

– The Bayes classifier for Gaussian classes (general case) is quadratic
– The Bayes classifier for Gaussian classes with equal covariance is linear
– The Mahalanobis distance classifier is Bayes-optimal for
 • normally distributed classes and
 • equal covariance matrices and
 • equal priors
– The Euclidean distance classifier is Bayes-optimal for
 • normally distributed classes and
 • equal covariance matrices proportional to the identity matrix and
 • equal priors
– Both Euclidean and Mahalanobis distance classifiers are linear classifiers

Thus, some of the simplest and most popular classifiers can be derived from decision-theoretic principles

– Using a specific (Euclidean or Mahalanobis) minimum distance classifier implicitly corresponds to certain statistical assumptions
– The question whether these assumptions hold or don’t can rarely be answered in practice; in most cases we can only determine whether the classifier solves our problem