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L21: Support vector machines 

• Empirical risk minimization 

• The VC dimension 

• Structural Risk Minimization 

• Maximum margin hyperplane 

• The Lagrangian dual problem 
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Introduction 
• Consider the familiar problem of learning a binary classification 

problem from data 
– Assume a given a dataset (𝑋, 𝑌) = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… (𝑥𝑁 , 𝑦𝑁)}, where 

the goal is to learn a function 𝑦 = 𝑓(𝑥) that will correctly classify unseen 
examples 

• How do we find such function? 
– By optimizing some measure of performance of the learned model  

• What is a good measure of performance? 
– As we saw in L4, a good measure is the expected risk 

𝑅 𝑓 = ∫ 𝐶 𝑓 𝑥 , 𝑦 𝑑𝑝(𝑥, 𝑦) 

• where 𝐶(𝑓, 𝑦) is a suitable cost function, e.g., 𝐶(𝑓, 𝑦) = 𝑓 𝑥 − 𝑦 2 

– Unfortunately, the risk cannot be measured directly since the underlying 
pdf is unknown 

– Instead, we typically use the risk over the training set, also known as the 
empirical risk 

𝑅𝑒𝑚𝑝 𝑓 =
1

𝑁
 𝐶(𝑓 𝑥𝑖 , 𝑦𝑖)
𝑁
𝑖=1   
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• Empirical Risk Minimization 

– A formal term for a simple concept: find the function 𝑓(𝑥) that minimizes the 
average risk on the training set 

– Minimizing the empirical risk is not a bad thing to do, provided that sufficient 
training data is available, since the law of large numbers ensures that the 
empirical risk will asymptotically converge to the expected risk for 𝑛 → ∞ 

– However, for small samples, one cannot guarantee that ERM will also minimize 
the expected risk.  This is the all too familiar issue of generalization 

• How do we avoid overfitting?  

– By controlling model complexity.  Intuitively, we should prefer the simplest 
model that explains the data (Occam’s razor) 

 

 

[Müller et al., 2001] 
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The VC dimension 

• The Vapnik-Chervonenkis dimension is a measure of the 
complexity (or capacity) of a class of functions 𝑓 𝛼  
– The VC dimension measures the largest number of examples that can 

be explained by the family 𝑓 𝛼  

• The basic argument is that high capacity and generalization 
properties are at odds 
– If the family 𝑓(𝛼) has enough capacity to explain every possible 

dataset, we should not expect these functions to generalize very well 

– On the other hand, if functions 𝑓(𝛼) have small capacity but they are 
able to explain our particular dataset, we have stronger reasons to 
believe that they will also work well on unseen data 

 

[Cristianini and Schölkopf, 2002] 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 5 

• Shattering a set of examples 
– Assume a binary classification problem with 𝑁 examples in 𝑅𝐷 and 

consider the set of 2 𝑁  possible dichotomies 

• For instance, with 𝑁 = 3 examples, the set of all possible dichotomies is 
{(000), (001), (010), (011), (100), (101), (110), (111)} 

– A class of functions 𝑓(𝛼) is said to shatter the dataset if, for every 
possible dichotomy, there is a function in 𝑓(𝛼) that models it 

• The VC dimension 
– The VC dimension VC(f) is the size of the largest dataset that can be 

shattered by the set of functions 𝒇(𝜶) 

– If the VC dimension of 𝑓(𝛼) is ℎ, then there exists at least one set of ℎ 
points that can be shattered by 𝑓(𝛼), but in general it will not be true 
that every set of h points can be shattered 

• One may even find a set of 𝑁 < ℎ points that cannot be shattered by this 
set of functions 

 

 
[Mitchel, 1997] 
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• Consider a binary classification problem in 𝑅2, and let 𝑓(𝜶) 
be the family of oriented hyperplanes (e.g., perceptrons) 

– For 𝑁 = 3, one can perform a linear separation of all points for every 
possible class assignment (see examples below) 

– For 𝑁 = 4, a hyperplane cannot separate all possible class 
assignments (e.g., consider the XOR problem) 

– Therefore, the VC dimension of the set of oriented lines in 𝑅2 is three 

– It can be shown that the VC dimension of the family of oriented 
separating hyperplanes in 𝑅𝐷 is at least 𝐷 + 1 

 

 

 

[Burges, 1998] 
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• VC dimension vs. number of free model parameters 
– One may expect that models with a large number of parameters would 

have high VC dimension, whereas models with few parameters would 
have low VC dimensions 

– Counter example 
• Consider the one-parameter function 𝑓 𝑥, 𝛼 = 𝑠𝑖𝑔𝑛 sin 𝛼𝑥   ∀𝑥, 𝛼 ∈ 𝑅 

• You choose an arbitrary number ℎ (as large as you want) 

• I choose the set of examples 𝑥𝑖 = 10
−𝑖 , 𝑖 = 1…ℎ 

• You choose any labels you like 𝑦1, 𝑦2, … 𝑦ℎ;  𝑥𝑖 ∈ {−1,+1} 

• I choose 𝛼 to be  

𝛼 = 𝜋 1 +  
1−𝑦𝑖 10

𝑖

2

ℎ
𝑖=1   

• Despite having only one parameter, the function 𝑓 𝑥, 𝛼  shatters an arbitrarily 
large number of points chosen according to the outlined procedure 

• And, at the same time, one can find four points that cannot be shattered by 
this function! 

• So what do we make of this? 
– The VC dimension is a more “sophisticated” measure of model complexity 

than dimensionality or number of free parameters [Pardo,2000] 

 

 

[Burges, 1998] 
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Structural Risk Minimization 

• Why is the VC dimension relevant? 
– Because the VC dimension provides bounds on the expected risk as a 

function of the empirical risk and the number of available examples  

– It can be shown that the following bound holds with probability 1 − 𝜂 

𝑅 𝑓 ≤ 𝑅𝑒𝑚𝑝 𝑓 +
ℎ ln (
2𝑁
ℎ
+ 1) − ln

𝜂
4

𝑁
𝑉𝐶 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

   (𝑬𝑸 𝟏) 

• where ℎ is the VC dimension of 𝑓(𝛼), 𝑁 is the number of training 
examples, and 𝑁 > ℎ 

– As the ratio 𝑁/ℎ gets larger, the VC confidence becomes smaller and 
the actual risk becomes closer to the empirical risk 

• Therefore, this expression is consistent with the intuition that ERM is only 
suitable when sufficient data is available 

– This and other results are part of the field known as Statistical 
Learning Theory or Vapnik-Chervonenkis Theory, from which Support 
Vector Machines originated 
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• Structural Risk Minimization 
– Another formal term for an intuitive concept: the optimal model is 

found by striking a balance between the empirical risk and the VC 
dimension 

• The SRM principle proceeds as follows 
– Construct a nested structure for family of function classes 𝐹1 ⊂ 𝐹2 ⊂
⋯𝐹𝑘 with non-decreasing VC dimensions (ℎ1 ≤ ℎ2 ≤ ⋯ℎ𝑘) 

– For each class 𝐹𝑖, find the solution 𝑓𝑖 that minimizes the empirical risk  

– Choose the function class 𝐹𝑖, and the corresponding solution fi, that 
minimizes the risk bound on the RHS of (EQ1) 

• In other words 
– Train a set of machines, one for each subset 

– For a given subset, train to minimize the empirical risk 

– Choose the machine whose sum of empirical risk and VC confidence is 
minimum 
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[Cherkassky and Mulier, 1998] 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 11 

The VC dimension in practice 

• Unfortunately, computing an upper bound on the expected 
risk is not practical in various situations 
– The VC dimension cannot be accurately estimated for non-linear 

models such as neural networks 

– Implementation of Structural Risk Minimization may lead to a non-
linear optimization problem 

– The VC dimension may be infinite (e.g., k=1 nearest neighbor), 
requiring infinite amount of data or 

– The upper bound may sometimes be trivial (e.g., larger than one) 

• Fortunately, Statistical Learning Theory can be rigorously 
applied in the realm of linear models 

 

[Cherkassky and Mulier, 1998; Müller et al., 2001] 
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Optimal separating hyperplanes 
• Problem statement 

– Consider the problem of finding a separating 
hyperplane for a linearly separable dataset 
𝑥1, 𝑦1 , 𝑥2, 𝑦2 … 𝑥𝑁, 𝑦𝑁 , 𝑥 ∈ 𝑅

𝐷 , 𝑦 ∈
{−1,+1} 

– Which of the infinite hyperplanes should we 
choose?  

• Intuitively, a hyperplane that passes too close to 
the training examples will be sensitive to noise 
and, therefore, less likely to generalize well for 
data outside the training set 

• Instead, it seems reasonable to expect that a 
hyperplane that is farthest from all training 
examples will have better generalization 
capabilities 

– Therefore, the optimal separating hyperplane 
will be the one with the largest margin, which is 
defined as the minimum distance of an example 
to the decision surface 

 

 

 

 

 

 

 

 

x1 

x2 

x1 

x2 

Maximum 
margin 

[Cherkassky and Mulier, 1998] 
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• How does this intuitive result relate to the VC dimension? 
– It can be shown [Vapnik, 1998] that the VC dimension of a separating 

hyperplane with a margin 𝑚 is bounded as follows 

ℎ ≤ min
𝑅2

𝑚2
, 𝐷 + 1 

• where 𝐷 is the dimensionality of the input space, and 𝑅 is the radius of 
the smallest sphere containing all the input vectors 

– Therefore, by maximizing the margin we are in fact minimizing the VC 
dimension 

– And, since the separating hyperplane has zero empirical error (it 
correctly separates all the training examples), maximizing the margin 
will also minimize the upper bound on the expected risk 

• Conclusion 
– The separating hyperplane with maximum margin will also minimize 

the structural risk 
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• To further understand the 
relationship between margin and 
capacity, consider the two separating 
hyperplanes below 
– A “skinny” one (small margin), which will 

be able to adopt many orientations 

– A “fat” one (large margin), which will 
have limited flexibility 

• A larger margin necessarily results in 
lower capacity 
– We normally think of complexity as being 

a function of the number of parameters 

• Instead, SLT tells us that if the margin is 
sufficiently large, the complexity of the 
function will be low even if the 
dimensionality is very high!  

 

 

x1 

x2 

x1 

x2 

[Bennett and Campbell, 2000] 
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• Solution 
– Since we want to maximize the margin, let’s express it as a function of the 

weight vector and bias of the separating hyperplane 

– From trigonometry, the distance between a point 𝑥 and a plane (𝑤, 𝑏) is  
𝑤𝑇𝑥 + 𝑏

𝑤
 

– Since the optimal hyperplane has infinite solutions (by scaling the weight 
vector and bias), we choose the solution for which the discriminant 
function becomes one for the training examples closest to the boundary 

𝑤𝑇𝑥𝑖 + 𝑏 = 1 
• This is known as the canonical hyperplane 

– Therefore, the distance from the closest   
example to the boundary is 

𝑤𝑇𝑥 + 𝑏

𝑤
=
1

𝑤
 

– And the margin becomes 

m =
2

𝑤
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(Distance between a plane and a point) 
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• Therefore, the problem of maximizing the margin is 
equivalent to 

 

 

 

– Notice that 𝐽(𝑤) is a quadratic function, which means that there exists 
a single global minimum and no local minima 

• To solve this problem, we will use classical Lagrangian 
optimization techniques 
– We first present the Kuhn-Tucker Theorem, which provides an 

essential result for the interpretation of Support Vector Machines 

 

Minimize        𝐽 𝑤 =
1

2
𝑤 2 

Subject to     𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1   ∀𝑖 
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(Kuhn-Tucker Theorem) 
• Given an optimization problem with convex domain 𝛀 ⊆ 𝑅𝑁 

  

 

  

– with 𝑓 ∈ 𝐶1 convex and 𝑔𝑖, ℎ𝑖 affine, necessary & sufficient conditions for 
a normal point 𝑧∗ to be an optimum are the existence of 𝛼∗, 𝛽∗ such that 

 

 

 

 

 

– 𝐿(𝑧, 𝛼, 𝛽) is known as a generalized Lagrangian function 

– The third condition is known as the Karush-Kuhn-Tucker (KKT) 
complementary condition 
• It implies that for active constraints 𝛼𝑖 ≥ 0; and for inactive constraints 𝛼𝑖 = 0 

• As we will see in a minute, the KKT condition allows us to identify the training 
examples that define the largest margin hyperplane.  These examples will be 
known as Support Vectors 

 [Cristianini and Shawe-Taylor, 2000] 

Minimize       𝑓 𝑧                 𝑧 ∈ Ω 
Subject to     𝑔𝑖 𝑧 ≤ 0       𝑖 = 1. . 𝑘 
       ℎ𝑖 𝑧 = 0      𝑖 = 1. .𝑚 

𝜕𝐿 𝑧∗, 𝛼∗, 𝛽∗ 𝜕𝑧 = 0  
𝜕𝐿 𝑧∗, 𝛼∗, 𝛽∗ 𝜕𝛽 = 0  
𝛼𝑖
∗𝑔𝑖 𝑧

∗ = 0   𝑖 = 1. . 𝑘 
𝑔𝑖 𝑧
∗ ≤ 0        𝑖 = 1. . 𝑘 

𝛼𝑖
∗ ≥ 0               𝑖 = 1. . 𝑘 

𝐿 𝑧, 𝛼, 𝛽 = 𝑓 𝑧  + 𝛼𝑖𝑔𝑖 𝑧
𝑘
𝑖=1 +  𝛽𝑖ℎ𝑖 𝑧

𝑚
𝑖=1   

where: 
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The Lagrangian dual problem 

• Constrained minimization of 𝐽 𝑤 = 𝟏/𝟐 𝒘 𝟐 is solved by 
introducing the Lagrangian  

𝐿𝑃 𝑤, 𝑏, 𝛼 =
1

2
𝑤 2 − 𝛼𝑖 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 − 1

𝑁

𝑖=1

 

– which yields an unconstrained optimization problem that is solved by: 

• minimizing 𝐿𝑃 w.r.t. the primal variables w and b, and  

• maximizing 𝐿𝑃 w.r.t. the dual variables 𝛼𝑖 ≥ 0 (the Lagrange multipliers) 

– Thus, the optimum is defined by a saddle point 

– This is known as the Lagrangian primal problem 

 

A saddle point 
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• Solution 
– To simplify the primal problem, we eliminate the primal variables (𝑤, 𝑏) using the 

first Kuhn-Tucker condition 𝜕𝐽/𝜕𝑧 = 0 

– Differentiating 𝐿𝑃 𝑤, 𝑏, 𝛼  with respect to 𝑤 and 𝑏, and setting to zero yields 

𝜕𝐿𝑃 𝑤, 𝑏, 𝛼 𝜕𝑤 = 0         ⇒ 𝑤 =  𝛼𝑖𝑦𝑖𝑥𝑖
𝑁
𝑖=1   

𝜕𝐿𝑃 𝑤, 𝑏, 𝛼 𝜕𝑏 = 0          ⇒  𝛼𝑖𝑦𝑖
𝑁
𝑖=1 = 0  

– Expansion of 𝐿𝑃 yields 

𝐿𝑃 𝑤, 𝑏, 𝛼 =
1

2
𝑤𝑇𝑤 − 𝛼𝑖𝑦𝑖𝑤

𝑇𝑥𝑖

𝑁

𝑖=1

− 𝑏 𝛼𝑖𝑦𝑖

𝑁

𝑖=1

+ 𝛼𝑖

𝑁

𝑖=1

 

– Using the optimality condition 𝜕𝐽/𝜕𝑤 = 0, the first term in 𝐿𝑃 can be expressed as 

𝑤𝑇𝑤 = 𝑤𝑇 𝛼𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

= 𝛼𝑖𝑦𝑖𝑤
𝑇𝑥𝑖

𝑁

𝑖=1

= 

 𝛼𝑖𝑦𝑖  𝛼𝑗𝑦𝑗𝑥𝑗

𝑁

𝑗=1

𝑇

𝑥𝑖

𝑁

𝑖=1

=  𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

– The second term in 𝐿𝑃 can be expressed in the same way 

– The third term in 𝐿𝑃 is zero by virtue of the optimality condition 𝜕𝐽/𝜕𝑏 = 0  

 
[Haykin, 1999] 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 21 

– Merging these expressions together we obtain 

𝐿𝐷 𝛼 = 𝛼𝑖

𝑁

𝑖=1

−
1

2
  𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

– Subject to the (simpler) constraints 𝛼𝑖 ≥ 0 and  𝛼𝑖𝑦𝑖
𝑁
𝑖=1 = 0 

– This is known as the Lagrangian dual problem 

• Comments 
– We have transformed the problem of finding a saddle point for 
𝐿𝑃 𝑤, 𝑏  into the easier one of maximizing 𝐿𝐷 𝛼  

• Notice that 𝐿𝐷 𝛼  depends on the Lagrange multipliers 𝛼, not on (𝑤, 𝑏) 

– The primal problem scales with dimensionality (𝑤 has one coefficient 
for each dimension), whereas the dual problem scales with the 
amount of training data (there is one Lagrange multiplier per example) 

– Moreover, in 𝐿𝐷 𝛼  training data appears only as dot products 𝑥𝑖
𝑇𝑥𝑗  

• As we will see in the next lecture, this property can be cleverly exploited 
to perform the classification in a higher (e.g., infinite) dimensional space 
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Support Vectors 
• The KKT complementary condition states that, for every point in 

the training set, the following equality must hold 
𝛼𝑖 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 − 1 = 0   ∀𝑖 = 1. . 𝑁 

– Therefore, ∀𝑥, either 𝛼𝑖 = 0 or 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏 − 1) = 0 must hold 

• Those points for which 𝛼𝑖 > 0 must then lie on one of the two hyperplanes 
that define the largest margin (the term 𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏 − 1) becomes zero only 
at these hyperplanes) 

• These points are known as the Support Vectors 

• All the other points must have 𝛼𝑖 = 0  

– Note that only the SVs contribute to defining the optimal hyperplane 
𝜕𝐽 𝑤,𝑏,𝛼

𝜕𝑤
= 0 ⇒ 𝑤 =  𝛼𝑖𝑦𝑖𝑥𝑖

𝑁
𝑖=1   

– NOTE: the bias term 𝑏 is found from  
the KKT complementary condition  
on the support vectors  

– Therefore, the complete dataset could  
be replaced by only the support vectors,  
and the separating hyperplane would be  
the same 

x1 

x2 

Support  
Vectors (>0) 




