L2: Review of probability and statistics

Probability
— Definition of probability
— Axioms and properties
— Conditional probability
— Bayes theorem
Random variables
— Definition of a random variable
— Cumulative distribution function
— Probability density function
— Statistical characterization of random variables

Random vectors
— Mean vector
— Covariance matrix

The Gaussian random variable
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Review of probability theory

Sample space

Definitions (informal)

— Probabilities are numbers assigned to events that
indicate “how likely” it is that the event will occur
when a random experiment is performed

— A probability law for a random experiment is a rule
that assigns probabilities to the events in the
experiment

Probability
— The sample space S of a random experiment is the law
set of all possible outcomes l

Axioms of probability
— Axioml: P[A;]=0
— Axiomll:  P[S] =1 M a2 A a4 even
— Axiom lll:  4; N A; = @ = P|A;UA;] = P[A;] + P|4)]

probability
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Warm-up exercise

— | show you three colored cards
* One BLUE on both sides
* One RED on both sides
* One BLUE on one side, RED on the other

A B C

— | shuffle the three cards, then pick one and show you one side only.
The side visible to you is RED

e Obviously, the card has to be either A or C, right?

— | am willing to bet S1 that the other side of the card has the same
color, and need someone in class to bet another S1 that it is the other

color
* On the average we will end up even, right?
e Let’s try it!
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More properties of probability
— P[A°] =1 - P[A]

— P[A] <1

— P[@] =0
— given{A; .. Ay}L{A; N A; = 0,Vij} = P[UR=1 Ak| = X¥=1 P[A]

— P[A1UA,] = P[A;] + P[A;] — P[A; N A;]

- P:U11¥=1 Ak] =
r=1 P[Ak] = 20 P[4 N A + -+ (“DV*IP[A; N A, ...N Ay]

— A; c A; = PlA,] < P[A,]
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Conditional probability

— |If A and B are two events, the probability of event A when we already
know that event B has occurred is

P[ANB]
* This conditional probability P[A|B] is read:
— the “conditional probability of A conditioned on B”, or simply
— the “probability of A given B”
— Interpretation
* The new evidence “B has occurred” has the following effects
* The original sample space S (the square) becomes B (the rightmost circle)
* The event A becomes ANB

e P[B] simply re-normalizes the probability of events that occur jointly with B

B has
occurred
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Theorem of total probability
— Let By, B, ... By be a partition of S (mutually exclusive that add to S)
— Any event A can be represented as
A=ANS=AnNn(B{UB,..By) =(ANB;))U(ANB,)..(AN By)
— Since B4, B, ... By are mutually exclusive, then
P[A] = P[AnB;]+ P[ANnB,] + -+ P[A N By]
— and, therefore

P[A] = P[A|B;]P[B;] + --- P[A|By]P[By] = X¥-1 P[A|Bx]P[By]

ESEEY
/B:/\VA ??
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Bayes theorem
— Assume {B{, B, ... By} is a partition of S
— Suppose that event 4 occurs
— What is the probability of event B;?

— Using the definition of conditional probability and the Theorem of
total probability we obtain

PlAnB;| _ PlA|B;]P|B)]
P[A] Yr=1P[A|B,]P[By]

P|B;|A] =

— This is known as Bayes Theorem or Bayes Rule, and is (one of) the
most useful relations in probability and statistics
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Bayes theorem and statistical pattern recognition
— When used for pattern classification, BT is generally expressed as

_ plxlo|Ple;]  plxle;|Plw)]
P[“’jlx] — N =
k=1Plx|wg]Plw] plx]
* where w; is the j-th class (e.g., phoneme) and x is the
feature/observation vector (e.g., vector of MFCCs)

— A typical decision rule is to choose class w; with highest P[a)j|x]

* Intuitively, we choose the class that is more “likely” given observation x
— Each term in the Bayes Theorem has a special name

e P :a)j] prior probability (of class w;)

e P :a)j|x] posterior probability (of class w; given the observation x)

° D :x|a)j] likelihood (probability of observation x given class wj)

o plx] normalization constant (does not affect the decision)
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Example
— Consider a clinical problem where we need to decide if a patient has a
particular medical condition on the basis of an imperfect test
* Someone with the condition may go undetected (false-negative)
* Someone free of the condition may yield a positive result (false-positive)
— Nomenclature
* The true-negative rate P(NEG|-COND) of a test is called its SPECIFICITY
* The true-positive rate P(POS|COND) of a test is called its SENSITIVITY

— Problem
e Assume a population of 10,000 with a 1% prevalence for the condition
e Assume that we design a test with 98% specificity and 90% sensitivity
e Assume you take the test, and the result comes out POSITIVE
* What is the probability that you have the condition?

— Solution

e Fill in the joint frequency table next slide, or
* Apply Bayes rule
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TESTIS TESTIS ROW TOTAL
POSITIVE NEGATIVE
True-positive | False-negative
HAS CONDITION | P(POS|COND) | P(NEG|COND)
o
CONDITION

COLUMN TOTAL
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TEST IS TEST IS ROW TOTAL
POSITIVE NEGATIVE
True-positive | False-negative
HAS CONDITION | P(POS|COND) | P(NEG|COND)
100x0.90 100x%(1-0.90) 100
FREE OF False-positive | True-negative
CONDITION P(POS[-COND)|P(NEG|-COND)
9,900%(1-0.98) | 9,900x0.98 9,900
COLUMN TOTAL 288 9,712 10,000
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— Applying Bayes rule
Plcond| +] =

_ P[+|cond]P[cond] _
— P —

P[+|cond]P[cond]

~ P[+|cond]P[cond] + P[+|—cond]P[—cond]

B 0.90 x 0.01 -
~ 090 x0.01 + (1 —-0.98) x0.99

= 0.3125
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Random variables
— When we perform a random experiment we are usually interested in
some measurement or numerical attribute of the outcome

* e.g., weights in a population of subjects, execution times when
benchmarking CPUs, shape parameters when performing ATR

— These examples lead to the concept of random variable

* Arandom variable X is a function that assigns a real number X(¢) to each
outcome ¢ in the sample space of a random experiment

* X (&) maps from all possible outcomes in sample space onto the real line

— The function that assigns values to each outcome is
fixed and deterministic, i.e., as in the rule “count the £ S
number of heads in three coin tosses”

 Randomness in X is due to the underlying randomness
of the outcome ¢ of the experiment

— Random variables can be x = X(§)

* Discrete, e.g., the resulting number after rolling a dice
e Continuous, e.g., the weight of a sampled individual

X real line
— _/

Sx
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Cumulative distribution function (cdf)

— The cumulative distribution function Fy (x)
of a random variable X is defined as the
probability of the event {X < x}

Fy(x) =PI X<x] —oo<x<wm

— Intuitively, Fy(b) is the long-term proportion
of times when X(&) < b

— Properties of the cdf
e 0<Fy(x)<1

 lim Fy(x) =1
X—>00

 lim Fy(x) =0
X——00

e Fy(a) < Fy(b) if a <b
« Fx(b) = }lli_r)r(l) Fx(b + h) = Fx(b™)
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P(X<x)

P(X<x)

5/6
4/6
3/6
2/6
1/6

100 200 300 400 s00 X(ID)

cdf for a person’s weight

1 2 3 4 5 6
cdf for rolling a dice
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Probability density function (pdf)

— The probability density function fy(x) of a
continuous random variable X, if it exists,
is defined as the derivative of Fy(x)

fx(x) =

— For discrete random variables, the equivalent to

pdf

dFy(x)

dx 10(; 2olo 300 400 500 X(Ib)
pdf for a person’s weight

the pdf is the probability mass function

fx(x) =
— Properties
* fx(x) >0
Pla<x <b] = fffx(x)dx
Fy(x) = ffoo fx(x)dx
1= ffooo fx(x)dx
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fx(x|A) = %Fx(xlA) where Fy(x|A) =

AFX(x) 1

Ax 5/6
4/6

3/6
2/6

1/6 Ill

pmf for rolling

pmf

[
5 6 X
(fair) dice

v Ny

P[{X<x}NA]

o U PlA]>0
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pdf

5/6
4/6
3/6
2/6
1/6

pmf

100 200 300 400 500

x(Ib)

pdf for a person’s weight

1]

pmf for rolling

L by

Iz

X

(fair) dice

e What is the probability of somebody weighting 200 Ib?
e According to the pdf, this is about 0.62
e This number seems reasonable, right?

* Now, what is the probability of somebody weighting 124.876 Ib?
e According to the pdf, this is about 0.43
e But, intuitively, we know that the probability should be zero (or very,
very small)

e How do we explain this paradox?
® The pdf DOES NOT define a probability, but a probability DENSITY!
* To obtain the actual probability we must integrate the pdf in an interval
* So we should have asked the question: what is the probability of
somebody weighting 124.876 |b plus or minus 2 Ib?

* The probability mass function is a ‘true’ probability (reason why we call
it a ‘mass’ as opposed to a ‘density’)

e The pmf is indicating that the probability of any number when rolling a
/ fair dice is the same for all numbers, and equal to 1/6, a very

legitimate answer
e The pmf DOES NOT need to be integrated to obtain the probability (it
cannot be integrated in the first place)
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Statistical characterization of random variables
— The cdf or the pdf are SUFFICIENT to fully characterize a r.v.
— However, a r.v. can be PARTIALLY characterized with other measures
— Expectation (center of mass of a density)

BIXI == | xfdx
— Variance (spread about the mean)
var(X] = % = E[(X — EIXD?] = [ (= (o

— Standard deviation
std[X] = ¢ = var[X]/?
— N-th moment

(0]

E[XN] =J xN fy (x)dx

— 00
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Random vectors

— An extension of the concept of a random variable

* Arandom vector X is a function that assigns a vector of real numbers to each
outcome ¢ in sample space S

* We generally denote a random vector by a column vector
— The notions of cdf and pdf are replaced by ‘joint cdf’ and ‘joint pdf’
* Given random vector X = [x4, X, ... xy ] we define the joint cdf as
Fx(x) = Px[{X1 < x} N {X; < x5} ... (X < xpy)]
e and the joint pdf as
0" Fy(x)

f&(&) - axlaxZ axN
— The term marginal pdf is used to represent the pdf of a subset of all the
random vector dimensions

* A marginal pdf is obtained by integrating out variables that are of no interest

* e.g., fora 2D random vector X = [x4, x,]7, the marginal pdf of x; is
x2=+00

fxl(x1) :j lexz (x1x2)dx;

Xp=—00

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

18



Statistical characterization of random vectors

— A random vector is also fully characterized by its joint cdf or joint pdf

— Alternatively, we can (partially) describe a random vector with
measures similar to those defined for scalar random variables

— Mean vector
E[X] = p = [EIX: ) E[X,] o EIXN]] = [, bz o in]

— Covariance matrix

covlX] =2 = E|(X - ) (K‘E)T] N

E|[(x4 n H1)?] E[(x; — .ul).(xN - IJN)]-
_E[(x1 — H1j(xN - HA{)] E[(XN - 1n)?]
g2 .. N
) cin 01\2, |
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— The covariance matrix indicates the tendency of each pair of features
(dimensions in a random vector) to vary together, i.e., to co-vary*

* The covariance has several important properties
— If x; and xj, tend to increase together, then ¢;;; > 0
— If x; tends to decrease when xj, increases, then ¢;;, < 0
— If x; and xj, are uncorrelated, then ¢;, =0
— |cix| < a10%, where g; is the standard deviation of x;
— G = Uiz = var[x;]

* The covariance terms can be expressed as ¢;; = al-z and ¢ = Pk 0;0k
— where pjis called the correlation coefficient

Xy Xy Xk o Xy 3 Xk
9 ©5 OO o o O M
QO C
‘oo 0 oo OooO © A g 80 Mon
9 00O o0 ? o o OoJ
Q)
“oo °6 Q ° R et Ooo
(o} o}
X; X; Xi
Cik=-6i0k Cik=-"200 Ci=0 Ci=t%20,0y Cik=cioi
pi=-1 Pik=""72 Pi=0 pi=t"2 Pi=t1

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

20



Given the following samples from a

A numerical example

3D distribution

Compute the covariance matrix

Generate scatter plots for every pair of vars.
Can you observe any relationships between

the covariance and the scatter plots?

You may work your solution in the templates below

===
A
x x x
2 o~ N o~ ~— ~— ~—
g_ . N - f: ’T\‘ f?’ ,\H ,:. ,T\‘
= =3 I e e Bl Bl el
>< - ~ . IH IN Im ><\—1 ><N ><m ><H ><H ><N
L x x x x x x N BNAS B2 B BEA Bt
1
2
3
4
Average

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

X,

A

Variables
(or features)
Examples | x, X, X2
1 2 2 4
2 3 4 6
3 5 4 2
4 6 6 4
N
X2
X1 . X3 .
N
X1
X;
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The Normal or Gaussian distribution

— The multivariate Normal distribution N(u, X) is defined as

1 1 Ty—1
_ —5(x—w) 27 (x—p)
fx(x) = (2m)n/2|z|1/2 e 2

— For a single dimension, this expression is reduced to

) = e
X) = e 20
X \V2To

0.4

035

0.3

025~

02r-

045

04

005

PR=]
|
ra
[=]
=]
5]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 22



— Gaussian distributions are very popular since
* Parameters (i, X) uniquely characterize the normal distribution

If all variables x; are uncorrelated (E[x;x; | = E[x;]E[x]), then
— Variables are also independent (P[x;x;] = P[x;]P[x]), and
— X is diagonal, with the individual variances in the main diagonal

Central Limit Theorem (next slide)

The marginal and conditional densities are also Gaussian

Any linear transformation of any N jointly Gaussian rv’s results in N rv’s
that are also Gaussian

— For X = [X{X, ... Xy]Tjointly Gaussian, and Ay invertible, then Y = AX is
also jointly Gaussian

B fx(A™y)
fry) = T
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Central Limit Theorem
— Given any distribution with a mean u and variance o?, the sampling

distribution of the mean approaches a normal distribution with mean u
and variance 2 /N as the sample size N increases

* No matter what the shape of the original distribution is, the sampling
distribution of the mean approaches a normal distribution

N isthe sample size used to compute the mean, not the overall number of
samples in the data

— Example: 500 experiments are performed using a uniform distribution
e N=1
M=1

— One sample is drawn from the distribution
and its mean is recorded (500 times) O e H T

— The histogram resembles a uniform distribution, — I~

as one would expect M=d _l_rl_r | =
e N=4 —
— Four samples are drawn and the mean of the =
four samples is recorded (500 times) M=7 ’_|—|_ e

— The histogram starts to look more Gaussian —

* As N grows, the shape of the histograms
resembles a Normal distribution more closely M=10 _I_r —|—|_
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