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L14: Mixture models and EM 

• Supervised vs. unsupervised learning 

• Mixture models  

• Expectation maximization (EM) 
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Supervised vs. unsupervised learning 

• The pattern recognition methods covered in class up to this 
point have focused on the issue of classification 

– A pattern consisted of a pair of variables {𝑥, 𝜔} where 

• 𝑥 was a collection of observations or features (feature vector) 

• 𝜔 was the concept behind the observation (label) 

– Such pattern recognition problems are called supervised (training with 
a teacher) since the system is given BOTH the feature vector and the 
correct answer 

• In the next three lectures we investigate a number of 
methods that operate on unlabeled data 

– Given a collection of feature vectors 𝑋 = {𝑥(1 , 𝑥(2 … , 𝑥(𝑁} without 
class labels 𝜔𝑖, these methods attempt to build a model that captures 
the structure of the data 

– These methods are called unsupervised (training without a teacher) 
since they are not provided the correct answer 
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• Although unsupervised learning methods may appear to 
have limited capabilities, there are several reasons that 
make them extremely useful 
– Labeling large data sets can be a costly procedure (i.e., ASR) 

– Class labels may not be known beforehand (i.e., data mining) 

– Large datasets can be compressed into a small set of prototypes (kNN) 

• The supervised and unsupervised paradigms comprise the 
vast majority of pattern recognition problems 
– A third approach, known as reinforcement learning, uses a reward 

signal (real-valued or binary) to tell the learning system how well it is 
performing 

– In reinforcement learning, the goal of the learning system (or agent) is 
to learn a mapping from states onto actions (an action policy) that 
maximizes the total reward 
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Approaches to unsupervised learning 
• Parametric (mixture models) 

– These methods model the underlying class-conditional densities with a mixture of 
parametric densities, and the objective is to find the model parameters 

𝑝 𝑥|𝜃 =  𝑝 𝑥|𝜔𝑖 , 𝜃𝑖 𝑃 𝜔𝑖

𝐶

𝑖=1

 

– These methods are closely related to parameter estimation (L6) 

– Mixture models are the subject of this lecture 

• Non-parametric (clustering) 
– No assumptions are made about the underlying densities, instead we seek a 

partition of the data into clusters 

– These methods will be the subject of the next two lectures 
• L15 will focus on statistical clustering 

• L16 will deal with connectionist approaches 

• There are two reasons why we cover mixture models at this point  
– The solution to the mixture problem (the EM algorithm) is also used for Hidden 

Markov Models, which will be introduced in just a few lectures 

– A particular form of the mixture model problem leads to the most widely used 
clustering method: the k-means algorithm (a.k.a. vector quantization) 
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Mixture models 

• Consider the now familiar problem of modeling a pdf given a 

dataset 𝑋 = {𝑥(1 , 𝑥(2 … , 𝑥(𝑁} 
– If the form of the underlying pdf was known (e.g. Gaussian), the 

problem could be solved using Maximum Likelihood (L6) 

– If the form of the pdf was unknown, the problem had to be solved 
with non-parametric DE methods such as Parzen windows (L7-8) 

• We will now consider an alternative DE method: modeling 
the pdf with a mixture of parametric densities  
– These methods are sometimes known as semi-parametric 

• Think of the individual components in the mixture as kernels, except for 
there is only a few of them, as opposed to one per data point as in L7 

– In particular, we will focus on mixture models of Gaussian densities 
(surprised?) 

𝑝 𝑥|𝜃 =  𝑝 𝑥| 𝜃𝑐 𝑃 𝜔𝑐

𝐶

𝑐=1
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• Mixture models can be posed in terms of the ML criterion 
– Given a dataset 𝑋 = {𝑥(1 , 𝑥(2 … , 𝑥(𝑁}, find the parameters of the model 

that maximize the log likelihood of the data 

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝 𝑋|𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥  log 𝑝 𝑥(𝑛|𝜃

𝑁

𝑛=1

= 𝑎𝑟𝑔𝑚𝑎𝑥  log 𝑝 𝑥(𝑛| 𝜃𝑐 𝑃 𝜔𝑐

𝐶

𝑐=1

𝑁

𝑛=1

 

• where 𝜃𝑐 = {𝜇𝑐 , Σ𝑐} and 𝑃(𝜔𝑐) are the parameters and mixing coefficient of 
the 𝑐𝑡ℎ mixture component, respectively 

• The mixing coefficients may also be interpreted as priors 

• We could try to find the maximum of this function by 
differentiation 
– For Σ𝑖 = 𝜎𝑖𝐼, the solution becomes [Bishop, 1995]: 

 
𝜕

𝜕𝜇𝑐
∙ = 0          ⇒ 𝜇 𝑐 =

 𝑃 𝜔𝑐|𝑥
(𝑛 𝑥(𝑛

𝑛
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• Notice that the previous equations are not a closed form solution 

– The model parameters 𝜇𝑐, Σ𝑐, and 𝑃(𝜔𝑐) also appear on the RHS as a 
result of Bayes rule! 

– Therefore, these expressions represent a highly non-linear coupled system 
of equations 

• However, these expressions suggest that we may be able to use a 
fixed-point algorithm to find the maxima 

1) Begin with some “old” value of the model parameters 

2) Evaluate the RHS of the equations to obtain “new” parameter values 

3) Let these “new” values become the “old” ones and repeat the process 

• Surprisingly, an algorithm of this simple form can be found which 
is  guaranteed to increase the log-likelihood with every iteration! 

– This example represents a particular case of a more general procedure 
known as the Expectation-Maximization algorithm 
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The Expectation-Maximization (EM) algorithm 
• EM is a general method for finding the ML estimate of the parameters of 

a pdf when the data has missing values 
– There are two main applications of the EM algorithm 

• When the data indeed has incomplete, missing or corrupted values as a result of a faulty 
observation process 

• When assuming the existence of missing or hidden parameters can simplify the 
likelihood function, which would otherwise lead to an analytically intractable 
optimization problem; this is the case we discuss in this lecture 

• Assume a dataset containing two types of features 
– A set of features 𝑋 whose value is known.  We call these the incomplete data 

– A set of features 𝑍 whose value is unknown.  We call these the missing data 

• We now define a joint pdf 𝑝(𝑋, 𝑍|𝜽) called the complete-data likelihood 
– This function is a random variable since the features 𝑍 are unknown 

– You can think of 𝑝(𝑋, 𝑍|𝜃) = ℎ𝑋,𝜃(𝑍), for some function ℎ𝑋,𝜃(∙), where 𝑋 and 𝜃are 
constant and 𝑍 is a random variable 

• As suggested by its name, the EM algorithm operates by performing  two 
basic operations over and over 
– An Expectation step 

– A Maximization step 
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• EXPECTATION 
– Find the expected value of log 𝑝(𝑋, 𝑍|𝜃) with respect to the unknown 

data 𝑍, given the data 𝑋 and the current parameter estimates 𝜃(𝑖−1 

𝑄 𝜃|𝜃(𝑖−1 = 𝐸𝑍 log 𝑝(𝑋, 𝑍|𝜃) |𝑋, 𝜃(𝑖−1  

• where 𝜃 are the new parameters that we seek to optimize to increase Q 

– Note that 𝑋 and 𝜃(𝑖−1 are constants, 𝜃 is the variable that we wish to 
adjust, and 𝑍 is a random variable defined by 𝑝(𝑍|𝑋, 𝜃(𝑖−1) 

– Therefore 𝑄 𝜃|𝜃(𝑖−1  is just a function of 𝜃 

• MAXIMIZATION 

– Find the argument 𝜃 that maximizes the expected value 𝑄 𝜃|𝜃(𝑖−1  

𝜃(𝑖 = argmax𝑄 𝜃|𝜃(𝑖−1  

• Convergence properties 
– It can be shown that 

1) each iteration (E+M) is guaranteed to increase the log-likelihood and  

2) the EM algorithm is guaranteed to converge to a local maximum of the 
likelihood function 
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• The two steps of the EM algorithm are illustrated below 
– During the E step, the unknown features 𝑍 are integrated out assuming 

the current values of the parameters 𝜃(𝑖−1  

– During the M step, the values of the parameters that maximize the 
expected value of the log likelihood are obtained 

 

 

 

 

 

 

 

 

 
– IN A NUTSHELL: since Z are unknown, the best we can do is maximize the 

average log-likelihood across all possible values of Z 
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Z 

 

EZ[log p(X,Z|)|X,(i-1) 
lo
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p
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The EM algorithm and mixture models 
• Having formalized the EM algorithm, we are now ready to find the 

solution to the mixture model problem 
– To keep things simple, we will assume a univariate mixture model where 

all the components have the same known standard deviation 𝜎 

• Problem formulation 
– As usual, we are given a dataset 𝑋 = {𝑥(1 , 𝑥(2 … , 𝑥(𝑁} , and we seek to 

estimate the model parameters 𝜃 = {𝜇1, 𝜇2  … 𝜇𝐶} 
– The following process is assumed to generate each random variable 𝑥(𝑛  

• First, a Gaussian component is selected according to mixture coeffs 𝑃(𝜔𝑐) 
• Then, 𝑥(𝑛 is generated according to the likelihood 𝑝(𝑥|𝜇𝑐) of that particular 

component 

– We will also use hidden variables 𝑍 = {𝑧1
(𝑛

, 𝑧2
(𝑛

…𝑧𝑐
(𝑛

} to indicate which of 
the 𝐶 Gaussian components generated data point 𝑥(𝑛 

• Solution 
– The probability 𝑝(𝑥, 𝑧|𝜃) for a specific example is 

𝑝 𝑥(𝑛, 𝑧1
(𝑛

, 𝑧2
(𝑛

…𝑧𝑐
(𝑛

|𝜃 =
1

2𝜋𝜎
𝑒
−

1

2𝜎2  𝑧𝑐
(𝑛

𝑥𝑐
(𝑛

−𝜇𝑐

2
𝐶
𝑐=1  

  

• where only one of the 𝑧𝑐
(𝑛

 can have a value of 1,and all others are zero 
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– The log-likelihood of the entire dataset is then 

log 𝑝 𝑋, 𝑍|𝜃 = log 𝑝 𝑥(𝑛, 𝑧(𝑛|𝜃𝑁
𝑛=1 =  log

1

2𝜋𝜎
−

1

2𝜎2
 𝑧𝑐

(𝑛
𝑥(𝑛 − 𝜇𝑐

2𝐶
𝑐=1

𝑁
𝑛=1    

– To obtain 𝑄 𝜃|𝜃(𝑖−1  we must then take the expectation over 𝑍 

E𝑍 log 𝑝 𝑋, 𝑍|𝜃 =  log
1

2𝜋𝜎
−

1

2𝜎2
 𝐸 𝑧𝑐

(𝑛
𝑥(𝑛 − 𝜇𝑐

2
𝐶

𝑐=1

𝑁

𝑛=1

 

• where we have used the fact that 𝐸[𝑓(𝑧)] =  𝑓(𝐸[𝑧]) for 𝑓 𝑧  linear 

– 𝐸[𝑧𝑐
(𝑛

] is simply the probability that 𝑥(𝑛 was generated by the 𝑐𝑡ℎ 

Gaussian component given current model parameters 𝜃(𝑖−1 

𝐸 𝑧𝑐
(𝑛

=
𝑝 𝑥=𝑥(𝑛|𝜇=𝜇𝑐

(𝑖−1
 

 𝑝 𝑥=𝑥(𝑛|𝜇=𝜇𝑞
(𝑖−1𝐶

𝑞=1

=
exp −

1

2𝜎2 𝑥(𝑛−𝜇𝑐
(𝑖−1 2

 exp −
1

2𝜎2 𝑥(𝑛−𝜇𝑞
(𝑖−1 2

𝐶
𝑞=1  

    (1) 

– These two expressions define the 𝑄 function  
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– The second step (Maximization) consists of finding the values  
𝜇1, 𝜇2 …𝜇𝐶  that maximize the 𝑄 function 

𝜃 = argmax
𝜇1…𝜇𝑐

𝑄 𝜃|𝜃(𝑖−1

= argmax
𝜇1…𝜇𝑐

 log
1

2𝜋𝜎
−

1

2𝜎2
 𝐸 𝑧𝑐

(𝑛
𝑥(𝑛 − 𝜇𝑐

2
𝐶

𝑐=1

𝑁

𝑛=1

= argmin
𝜇1…𝜇𝑐

  𝐸 𝑧𝑐
(𝑛

𝑥(𝑛 − 𝜇𝑐
2

𝐶

𝑐=1

𝑁

𝑛=1

 

– Which, computing the zeros of the partial derivative, yields: 

𝜇𝑐 =
1

𝑁
 𝐸 𝑧𝑐

(𝑛
𝑥(𝑛𝑁

𝑛=1      (2) 

– Equations (1) and (2) define a fixed-point algorithm that can be used 
to converge to a (local) maximum of the log-likelihood function 
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Relation to k-means clustering 

• A widely used vector quantization procedure can be derived 
from the EM algorithm by taking the limit 𝝈 → 𝟎 

– In this case, we can see that 𝐸[𝑧𝑐
(𝑛

] collapses to 0 or 1 

𝐸 𝑧𝑐
(𝑛

=
e
−

1

2𝜎2 𝑥(𝑛−𝜇𝑐
(𝑖−1 2

 e
−

1

2𝜎2 𝑥(𝑛−𝜇𝑞
(𝑖−1 2

𝐶
𝑞=1  

=  1 𝑖𝑓 𝑥(𝑛 − 𝜇𝑐
(𝑖−1 2

> 𝑥(𝑛 − 𝜇𝑞
(𝑖−1 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              
∀𝑞   

– And the EM update formula reduces to the popular k-means 
algorithm, which will be discussed in the next lecture 
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EM solution to generic mixture models  

• A derivation of the update equations for the full-covariance 
mixture model can be found in [Bilmes, 1997; Nabney, 2002] 
– The final equations are provided here for those of you interested in 

experimenting with mixture models 

𝑃(𝑖 𝜔𝑐 =
1

𝑁
 𝑃(𝑖−1 𝜔𝑐|𝑥

(𝑛

𝑁

𝑛=1

 

𝜇𝑐
(𝑖

=
 𝑃(𝑖−1 𝜔𝑐|𝑥

(𝑛 𝑥(𝑛𝑁
𝑛=1

 𝑃(𝑖−1 𝜔𝑐|𝑥
(𝑛𝑁

𝑛=1

 

Σ𝑐
(𝑖

=
 𝑃(𝑖−1 𝜔𝑐|𝑥

(𝑛 𝑥(𝑛 − 𝜇𝑐
(𝑖

𝑥(𝑛 − 𝜇𝑐
(𝑖 𝑇

𝑁
𝑛=1

 𝑃(𝑖−1 𝜔𝑐|𝑥
(𝑛𝑁

𝑛=1

 

– Notice where the new parameters 𝜃(𝑖 and old parameters 𝜃(𝑖−1 
appear on the RHS and compare these expressions to those in page 6 
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Example 

• The annulus problem 

– A training set of 𝑁 = 900 examples was generated using a uniform pdf 
inside an annulus with inner and outer radii of 1 and 2 units, respectively 

– A mixture model with 𝐶 = 30 Gaussians was used to model the 
distribution of the training set 

• Training procedure 

– The centers of the Gaussians were initialized by choosing 30 arbitrary 
points from the training set 

– The covariance matrices were initialized to be diagonal, with a large 
variance  compared to that of the training data 

• To avoid singularities, at every iteration the covariance matrices computed 
with EM were regularized with a small multiple of the identity matrix  

– Components whose mixing coefficients fell below a threshold were 
trimmed  

• This allowed the algorithm to produce a compact model with only a few of the 
initial C=30 Gaussian components 

• Illustrative results are provided in the next page 
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