L1: Course introduction

Introduction
- Course organization
- Grading policy
- Outline

What is pattern recognition?
- Definitions from the literature
- Related fields and applications

Components of a pattern recognition system
- Pattern recognition problems
- Features and patterns
- The pattern recognition design cycle

Pattern recognition approaches
- Statistical
- Neural
- Structural
Course organization (1)

Instructor

– Ricardo Gutierrez-Osuna
– Office: 506A HRRB
– Tel: (979) 845-2942
– E-mail: rgutier@cse.tamu.edu
– URL: http://faculty.cse.tamu.edu/rgutier

Grading

– Homework
 • 3 assignments, every 3 weeks
– Tests
 • 1 midterm, 1 final (comprehensive)
– Term project
 • Open-ended
 • Public presentation

<table>
<thead>
<tr>
<th></th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>40</td>
</tr>
<tr>
<td>Project</td>
<td>30</td>
</tr>
<tr>
<td>Midterm</td>
<td>15</td>
</tr>
<tr>
<td>Final Exam</td>
<td>15</td>
</tr>
</tbody>
</table>
Course organization (2)

Homework assignments

– Start early, ideally the same day they are assigned
– Do the assignments individually – code sharing is not allowed
– Unless otherwise stated, you are to develop your own code
 • When in doubt about open-source or built-in libraries, ask!
– To get an A in the homework, you must go beyond the assignment
– Budget about 20 hours for each homework

Course project

– Start early; do not wait until the day before proposals are due
– Discuss your ideas with me early on
– The ideal project has enough substance to be publishable in a reputable engineering conference
– The ideal team consists of 3-4 people
– Budget about 40 hours (per person) for the course project
– You must be able to write in clear professional English
Course organization (3)

Prerequisites
- Statistics, linear algebra, calculus (undergraduate level)
- Experience with a programming language (C/C++, Java, Python)

Classroom etiquette
- Arrive to the classroom on time to avoid disrupting others
- No laptops, tablets or smartphones; lecture notes are available online

Other
- This is NOT an easy class... you will have to work hard
- No extra assignments to make up for poor grades
What is pattern recognition?

Definitions from the literature

- “The assignment of a physical object or event to one of several pre-specified categories” – Duda and Hart
- “A problem of estimating density functions in a high-dimensional space and dividing the space into the regions of categories or classes” – Fukunaga
- “Given some examples of complex signals and the correct decisions for them, make decisions automatically for a stream of future examples” – Ripley
- “The science that concerns the description or classification (recognition) of measurements” – Schalkoff
- “The process of giving names ω to observations x”, – Schürmann
- Pattern Recognition is concerned with answering the question “What is this?” – Morse
Examples of pattern recognition problems

Machine vision
– Visual inspection, ATR
– Imaging device detects ground target
– Classification into “friend” or “foe”

Character recognition
– Automated mail sorting, processing bank checks
– Scanner captures an image of the text
– Image is converted into constituent characters

Computer aided diagnosis
– Medical imaging, EEG, ECG signal analysis
– Designed to assist (not replace) physicians
– Example: X-ray mammography
 • 10-30% false negatives in x-ray mammograms
 • 2/3 of these could be prevented with proper analysis

Speech recognition
– Human Computer Interaction, Universal Access
– Microphone records acoustic signal
– Speech signal is classified into phonemes and/or words
Related fields and application areas for PR

Related fields

- Adaptive signal processing
- Machine learning
- Artificial neural networks
- Robotics and vision
- Cognitive sciences
- Mathematical statistics
- Nonlinear optimization
- Exploratory data analysis
- Fuzzy and genetic systems
- Detection and estimation theory
- Formal languages
- Structural modeling
- Biological cybernetics
- Computational neuroscience

Applications

- Image processing
- Computer vision
- Speech recognition
- Multimodal interfaces
- Automated target recognition
- Optical character recognition
- Seismic analysis
- Man and machine diagnostics
- Fingerprint identification
- Industrial inspection
- Financial forecast
- Medical diagnosis
- ECG signal analysis
Components of a pattern recognition system

A basic pattern classification system contains

– A sensor
– A preprocessing mechanism
– A feature extraction mechanism (manual or automated)
– A classification algorithm
– A set of examples (training set) already classified or described
Types of prediction problems

Classification
- The PR problem of assigning an object to a class
- The output of the PR system is an integer label
 - e.g. classifying a product as “good” or “bad” in a quality control test

Regression
- A generalization of a classification task
- The output of the PR system is a real-valued number
 - e.g. predicting the share value of a firm based on past performance and stock market indicators

Clustering
- The problem of organizing objects into meaningful groups
- The system returns a (sometimes hierarchical) grouping of objects
 - e.g. organizing life forms into a taxonomy of species

Description
- The problem of representing an object in terms of a series of primitives
- The PR system produces a structural or linguistic description
 - e.g. labeling an ECG signal in terms of P, QRS and T complexes
Features and patterns

Feature

- Feature is any distinctive aspect, quality or characteristic
 - Features may be symbolic (i.e., color) or numeric (i.e., height)
- Definitions
 - The combination of d features is a d-dim column vector called a feature vector
 - The d-dimensional space defined by the feature vector is called the feature space
 - Objects are represented as points in feature space; the result is a scatter plot

\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_d \end{bmatrix}
\]

Pattern

- Pattern is a composite of traits or features characteristic of an individual
- In classification tasks, a pattern is a pair of variables \{\(x, \omega\)\} where
 - x is a collection of observations or features (feature vector)
 - ω is the concept behind the observation (label)
What makes a “good” feature vector?

The quality of a feature vector is related to its ability to discriminate examples from different classes.

- Examples from the same class should have similar feature values.
- Examples from different classes have different feature values.

More feature properties:

- Linear separability
- Non-linear separability
- Highly correlated features
- Multi-modal features
Classifiers

The task of a classifier is to partition feature space into class-labeled decision regions

- Borders between decision regions are called decision boundaries
- The classification of feature vector \(x \) consists of determining which decision region it belongs to, and assign \(x \) to this class

A classifier can be represented as a set of discriminant functions

- The classifier assigns a feature vector \(x \) to class \(\omega_i \) if \(g_i(x) > g_j(x) \) \(\forall j \neq i \)
Pattern recognition approaches

Statistical

- Patterns classified based on an underlying statistical model of the features
 - The statistical model is defined by a family of class-conditional probability density functions $p(x|\omega_i)$ (Probability of feature vector x given class ω_i)

Neural

- Classification is based on the response of a network of processing units (neurons) to an input stimuli (pattern)
 - “Knowledge” is stored in the connectivity and strength of the synaptic weights
- Trainable, non-algorithmic, black-box strategy
- Very attractive since
 - it requires minimum a priori knowledge
 - with enough layers and neurons, ANNs can create any complex decision region

Syntactic

- Patterns classified based on measures of structural similarity
 - “Knowledge” is represented by means of formal grammars or relational descriptions (graphs)
- Used not only for classification, but also for description
 - Typically, syntactic approaches formulate hierarchical descriptions of complex patterns built up from simpler sub patterns
Feature extraction:
- # intersections
- # right oblique lines
- # left oblique lines
- # horizontal lines
- "holes"

\[x_2 = \begin{bmatrix} 3 & 2 & 1 & 2 \end{bmatrix}^T \rightarrow p(x_2 | "A") \]

*Neural approaches may also employ feature extraction

To parser
A simple pattern recognition problem

Consider the problem of recognizing the letters L, P, O, E, Q

- Determine a sufficient set of features
- Design a tree-structured classifier

<table>
<thead>
<tr>
<th>Character</th>
<th>Vertical straight lines</th>
<th>Horizontal straight lines</th>
<th>Oblique straight lines</th>
<th>Curved lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The pattern recognition design cycle

Data collection
- Probably the most time-intensive component of a PR project
- How many examples are enough?

Feature choice
- Critical to the success of the PR problem
 - “Garbage in, garbage out”
- Requires basic prior knowledge

Model choice
- Statistical, neural and structural approaches
- Parameter settings

Training
- Given a feature set and a “blank” model, adapt the model to explain the data
- Supervised, unsupervised and reinforcement learning

Evaluation
- How well does the trained model do?
- Overfitting vs. generalization
Consider the following scenario

– A fish processing plan wants to automate the process of sorting incoming fish according to species (salmon or sea bass)

– The automation system consists of

 • a conveyor belt for incoming products
 • two conveyor belts for sorted products
 • a pick-and-place robotic arm
 • a vision system with an overhead CCD camera
 • a computer to analyze images and control the robot arm

[Duda, Hart and Stork, 2001]
Sensor
– The vision system captures an image as a new fish enters the sorting area

Preprocessing
– Image processing algorithms, e.g., adjustments for average intensity levels, segmentation to separate fish from background

Feature extraction
– Suppose we know that, on the average, sea bass is larger than salmon
 • From the segmented image we estimate the length of the fish

Classification
– Collect a set of examples from both species
– Compute the distribution of lengths for both classes
– Determine a decision boundary (threshold) that minimizes the classification error
– We estimate the classifier’s probability of error and obtain a discouraging result of 40%
– What do we do now?
Improving the performance of our PR system

– Determined to achieve a recognition rate of 95%, we try a number of features
 • Width, area, position of the eyes w.r.t. mouth...
 • only to find out that these features contain no discriminatory information
– Finally we find a “good” feature: average intensity of the scales

– We combine “length” and “average intensity of the scales” to improve class separability
– We compute a linear discriminant function to separate the two classes, and obtain a classification rate of 95.7%
Cost vs. classification rate

- Our linear classifier was designed to minimize the overall misclassification rate

- Is this the best objective function for our fish processing plant?
 - The cost of misclassifying salmon as sea bass is that the end customer will occasionally find a tasty piece of salmon when he purchases sea bass
 - The cost of misclassifying sea bass as salmon is an end customer upset when he finds a piece of sea bass purchased at the price of salmon

- Intuitively, we could adjust the decision boundary to minimize this cost function
The issue of generalization

– The recognition rate of our linear classifier (95.7%) met the design specs, but we still think we can improve the performance of the system

 • We then design an ANN with five hidden layers, a combination of logistic and hyperbolic tangent activation functions, train it with the Levenberg-Marquardt algorithm and obtain an impressive classification rate of 99.9975% with the following decision boundary

– Satisfied with our classifier, we integrate the system and deploy it to the fish processing plant

 • After a few days, the plant manager calls to complain that the system is misclassifying an average of 25% of the fish

 • What went wrong?